5330
N. Pandurangan et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5328–5330
Table 1
Yields, UV and IR spectral data of compounds
Chalcones Yield
(%)
UV
nm
IR (CO)
cmꢀ1
Epoxides Yield
(%)
UVnm IR (CO)
cmꢀ1
Dihydroflavonols Yield
(%)
UV
nm
IR (CO)
cmꢀ1
Flavonols Yield
(%)
UV nm
3
80–85 327
78–82 305
85–88 322
80–83 330
80–88 328
1677
1676
1647
1676
1676
4
85–90 285
1700,883.3*
5
56–59 288
52–56 286
56–60 292
55–60 293
53–58 283
1644
1635
1636
1640
1634
6
50–55 254,370
40–50 256,372
55–60 266,366
45–50 255,371
50–55 268,364
3a
3b
3c
3d
4a
4b
4c
4d
73–79 283
79–85 276
70–75 282
75–80 275
1696,882.5* 5a
1700,884.8* 5b
1699,884.3* 5c
1700,884.5* 5d
6a
6b
6c
6d
*
Epoxide ring.
2. Geetha, S.; Basu, M.; Jayamurthy, A. S.; Malhotra, A. S.; Pal, K.; Prasad, R.;
Kumar, R.; Sawhney, R. C. In Seabuckthorn (Hippophae L.) Advances in Research
and Development; Singh, Virendra, Ed.; Daya Publishing House: Delhi, 2008;
Vol. III, pp 245–253.
Table 2
Antioxidant properties
Products
EC50 value (lg)
3. Korovina, M. A.; Fefelov, V. A. In Seabuckthorn (Hippophae L.) Biochemistry and
Pharmacology; Singh, Virendra, Ed.; Daya Publishing House: Delhi, 2006; Vol. II,
pp 108–132.
4. Bose, Chinchu; Pandurangan, N.; Banerji, A.; Pradhan, S.; Basnett, R. K.;
Basishtha, B. C. In Presented at the National Conference on Seabucthorn; DIPAS:
Delhi, 2010.
5. Goel, H. C.; Kumar, I. P.; Samanta, N.; Rana, S. V. S. Mol. Cell Biochem. 2003, 254,
57.
6. Ya-ming, X.; Jeffrey, A.; Smith, J. A.; Deborah, A.; Lannigan, D. A.; Sidney, M.;
Hecht, S. M. Bioorg. Med. Chem. 2006, 14, 3974.
(a) Gallic acid
(b) Ellagic acid
(c) Gossypetin
(d) Tannic acid
(e) Quercetagetin
(f) Patuletin
(g) Trolox
(h) PC
(i) Quercetin (6c)
(j) Kaempferol (6b)
(k) Rutin
3.8
4.8
5.5
8.8
10.5
10.6
12.5
12.8
14.4
14.6
15.5
16
18.5
24
25.5
26.2
40
7. Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J. V. J. Biol. Chem. 2005, 280,
5636.
8. Gao, X. In Seabuckthorn (Hippophae L.) Biochemistry and Pharmacology; Singh,
Virendra, Ed.; Daya Publishing House: Delhi, 2006; Vol. II, pp 390–401.
9. Mohamed, B.; Stephane, L.; Aziz, A.; Christian, R. Tetrahedron 2002, 58, 10001.
10. Ganguly, A. K.; Kaur, S.; Mahata, P. K.; Biswas, D.; Pramanik, B. N.; Chan, T. M.
Tetrahedron Lett. 2005, 46, 4119.
11. Tom, H.; Robinson, R. J. Chem. Soc. 1926, 2336.
12. (a) Oyamada, T.; Hajime, B. Bull. Chem. Soc. 1966, 39, 507; (b) Benett, M.; Burke,
A. J.; O’Sullivan, W. I. Tetrahedron 1996, 52, 7163.
13. (a) Jongsung, L.; Eunsun, J.; Jienny, L.; Saebom, K.; Sungran, H.; Youngsoo, K.;
Yongwoo, K.; Sang, Y. B.; Yeong-Shik, K.; Deokhoon, P. Obesity 2009, 172, 226;
(b) Manuel, S.; Federica, L.; Rocio, V.; Inmaculada, C. V.; Angel, C.; Rosario, J.;
Laura, M.; Miguel, R.; Juwan, T.; Francisco, P. V.; Juan, D. J. Nutr. 2005, 137, 910;
(c) Bao-song, T.; Yan-Hua, L.; Zheng-Tao, W.; Xin-Yi, T.; Dong-Zhi, W. Pharm.
Res. 2006, 54, 186; (d) Ma, G.; Yang, C.; Qu, Y.; Wei, H.; Zhang, T.; Zhang, N.
Chem. Biol. Int. 2007, 167, 153; (e) Manuel, I.; Francisco, P. V.; Angel, C.; Juan, D.;
Francisco, Z. A.; José, G. L. L.; Juan, T. Planta Med. 2002, 68, 307.
14. Wuts, P. G. M.; Greene, T. W. Protecting Groups in Organic Synthesis; John Wiley
& Sons: New York, 2007.
(l) Hibifolin
(m) SBT flavone
(n) Dihydroquercetin (5c)
(o) Gossypin
(p) Isorhamnetin (6)
(q) Seabucthorn leaf 70% acetone ext
(r) Kaempferide (6d)
(s) SBT seed oil
(t) SBT pulp oil
(u) Tamarixetin (6a)
(v) Dihydroisorhamnetin (5)
(w) Dihydrotamarixetin (5a)
(x) Dihydrokaempferol (5b)
(y) Dihydrokaempferide (5d)
97
>100
>100
>100
>100
>100
>100
>100
15. Ya-ming, X.; Jeffrey, A.; Smith, J. A.; Deborah, A.; Lanningan, D. A.; Sidney, M.;
Hecht, S. M. Bioorg. Med. Chem. 2006, 14, 1599.
In conclusion, a synthetic route to polyhydroxy- or partial
methyl ethers of flavone-3-ols of biological importance has been
achieved using readily accessible starting materials and mild reac-
tion conditions. Amongst the compounds tested, gallic and ellagic
acids were found to have higher antioxygenic activities compared
to flavone-3-ols. Also we have found anti-diabetic and radio-pro-
tective activity of gallic acid.22 Therefore due importance should
be given to the presence of gallic and ellagic acids for bioactivity
studies of SBT extracts. Since many flavone-3-ols show better
activities when compared to flavones from SBT, it should be feasi-
ble to develop improved bioactive formulations compared to SBT
products.
16. General synthetic procedure: (a) 3, 3a, 3b, 3c and 3d; The chalcone (3) was
obtained by the condensation of 2,4,6-tri-MOM phloracetophenone (1,
1 mmol) with 4-MOM vanillin (2, 1 mmol) in DMF (5 ml) using powdered
KOH (1 mmol) under anhydrous conditions at 0–4 °C for 4 h. Water (20 ml)
was added and extracted with dichloromethane (30 ml ꢁ 2), dried with
anhydrous sodium sulfate and solvent removed under reduced pressure. The
product was purified by column (SiO2) chromatography.
(b) Epoxides 4, 4a, 4b, 4c and 4d: An aqueous solution of NaOH (4.8 ml, 5%) and
H2O2 (5.0 ml, 30%) were added to a stirred solution of chalcone (3, 1 mmol) in
methanol (20 ml) at rt (4 h). Water (100 ml) was added and extracted with
ethyl acetate (30 ml ꢁ 2), dried with anhydrous sodium sulfate and solvent
removed under reduced pressure. The products were purified by column (SiO2)
chromatography.
(c) Dihydroflavonols 5, 5a, 5b, 5c and 5d: Epoxide (4, 0.9 mmol) in methanol
(44 ml) and concentrated HCl (2 ml) were refluxed for 20 (min) and poured
into ice-water. The product was collected by centrifugation.
(d) Flavonols 6, 6a, 6b, 6c and 6d: Dihydroflavonols (5, 0.3 mmol) in ethanol
(2.5 ml) was added to potassium metabisulphite, (5.0 ml, 20%) and heated at
100 °C (5–8 h). The reaction mixture is poured into crushed ice. The
centrifuged product was purified by column (SiO2) chromatography. The
purity of final products were analyzed by HPLC and NMR (Supplementary
data).
Acknowledgments
Partial grant from Department of Biotechnology, Government of
India is gratefully acknowledged. We are thankful to the Dean,
School of Biotechnology for his keen interest in this work.
17. Masa, A.; Vilanova, M.; Pomar, F. J. Chromatogr. A 2007, 1164, 291.
18. Bahl, C. P.; Banerji, A.; Seshadri, T. R. Curr. Sci. 1968, 37, 1.
19. (a) Jae, S. C.; Won, S. W.; Jong, H. P. Arch. Pharm. Res. 1990, 13, 374; (b) Nian, G.
L.; Zhi, H. S.; Yu, P. T.; Jian, P. Y.; Jin, A. D. Beilstein J. Org. Chem. 2009, 5, 60.
20. Singh, Virendra In Seabuckthorn (Hippophae L.) Biochemistry and Pharmacology;
Singh, Virendra, Ed.; Daya Publishing House: Delhi, 2006; Vol. II, pp 1–69.
21. Banerjee, D.; Chakrabarti, S.; Hazra, A. K.; Banerjee, S.; Ray, J.; Mukherjee, B. Afr.
J. Biotechnol. 2008, 7, 805.
Supplementary data
Supplementary data associated with this article can be found, in
22. (a) Vishnuprasad, C. N.; Anjana, T.; Banerji, A.; Anilkumar, G. FEBS Lett. 2010,
584, 531; Amitava, K.; Dipesh, D.; Mahuya, S.; Krishnendu, M.; Rishikesh, B.;
Sanjit, D. In Presented at the National Conference on Seabucthorn; DIPAS: Delhi,
2010.
References and notes
1. Gupta, A.; Kumar, R.; Pal, K.; Singh, V.; Banerjee, P. K.; Sawhney, R. C. Mol. Cell
Biochem. 2006, 290, 193.