Organic Letters
Letter
Hierso, J.-C. Chem. Soc. Rev. 2012, 41, 3929. (d) Cacchi, S.; Fabrizi, G.
Chem. Rev. 2011, 111, PR215. (e) Taber, D. F.; Tirunahari, P. K.
Tetrahedron 2011, 67, 7195. (f) Bandini, M.; Eichholzer, A. Angew.
Chem., Int. Ed. 2009, 48, 9608. (g) Humphrey, G. R.; Kuethe, J. T. Chem.
Rev. 2006, 106, 2875. (h) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1
2000, 1045. (i) Hegedus, L. S. Angew. Chem., Int. Ed. 1988, 27, 1113.
(3) (a) Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J. Am.
Chem. Soc. 1978, 100, 5800. (b) Harrington, P. J.; Hegedus, L. S. J. Org.
Chem. 1984, 49, 2657. (c) Harrington, P. J.; Hegedus, L. S.; McDaniel,
K. F. J. Am. Chem. Soc. 1987, 109, 4335. (d) Krolski, M. E.; Renaldo, A.
F.; Rudisill, D. E.; Stille, J. K. J. Org. Chem. 1988, 53, 1170. (e) Larock, R.
C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996,
61, 3584. (f) Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 14048. (g) Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13,
3738.
our standard reaction conditions using 1a as the substrate
afforded 2a and the same byproduct 8 as in eq 4 without 10,
which could be formed through interception of a radical
intermediate by alkene 7 in domino C−H amination/
intermolecular Heck-type coupling reaction (eq 5).11
While a clear mechanistic picture is elusive at this juncture,
these findings suggest that oxidation of the carbon radical (B,
Scheme 2), resulted from the intramolecular nucleophilic attack
by the o-sulfonamide group toward an olefin radical cation (via
A),12 to the corresponding benzylic carbocation intermediate
(C) followed by the deprotonation (B → C → 2) is much faster
than intermolecular addition of the radical (B) to an alkene (e.g.,
7). In addition, intermolecular C−N and C−C bond formations
under our conditions appear to be unfavorable.
(4) (a) Liwosz, T. W.; Chemler, S. R. Chem.Eur. J. 2013, 19, 12771.
(b) Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562.
(5) For examples on DDQ-mediated oxidation of olefins and
dehydrogenative cross-coupling reaction for C−C and C−heteroatom
bond formations, see: (a) Bhattacharya, A.; DiMichele, L. M.; Dolling,
U.-H.; Grabowski, E. J. J.; Grenda, V. J. J. Org. Chem. 1989, 54, 6118.
(b) Rathore, R.; Kochi, J. K. Tetrahedron Lett. 1994, 35, 8577. (c) Cheng,
D.; Bao, W. L. Adv. Synth. Catal. 2008, 350, 1263. (d) Li, Y.; Bao, W. L.
Adv. Synth. Catal. 2009, 351, 865. (e) Mo, H. J.; Bao, W. L. Adv. Synth.
Catal. 2009, 351, 2845. (f) Jin, J.; Li, Y.; Wang, Z. J.; Qian, W. X.; Bao, W.
L. Eur. J. Org. Chem. 2010, 1235. (g) Wang, Z.; Mo, H.; Cheng, D.; Bao,
W. Org. Biomol. Chem. 2012, 10, 4249. (h) Wu, aY.; Kwong, F. Y.; Li, P.;
Chan, A. S. C. Synlett 2013, 2009.
In summary, we have developed an effective metal-free C−H
amination of N-Ts-2-alkenylanilines by using DDQ as an
oxidant. This new protocol represents an attractive route for a
straightforward access to a diverse range of substituted indoles, a
privileged motif found in a number of natural and designed
compounds with important biological and physical implications.
Our experimental findings suggest that this oxidative cyclization
reaction implicates a radical cation generated by SET and a
phenonium ion intermediate for a subsequent migratorial
process, following a postulated mechanistic route as depicted
in Scheme 2.
Despite its potential utility and efficiency in indole synthesis,
the narrow substrate scope of C−H amination of 2-alkenylani-
lines seems to have encumbered its application in organic
synthesis.3,4 The reaction presented herein could overcome the
longstanding deficiencies and, furthermore, offer high efficiency
and facilitation as well as a broad substrate scope without using
expensive transition-metal catalysts and a special equipment/
experimental setup. Further investigations to extend to an
intermolecular version of this protocol together with detailed
mechanistic studies are currently underway in our laboratory.
(6) For details, see Supporting Information.
(7) Selected recent examples, see: (a) del Río, E.; Menen
́
dez, M. I.;
Lopez, R.; Sordo, T. L. J. Am. Chem. Soc. 2001, 123, 5064. (b) Boye, A.
́
C.; Meyer, D.; Ingison, C. K.; French, A. N.; Wirth, T. Org. Lett. 2003, 5,
2157. (c) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed.
2008, 47, 5056. (d) Manet, I.; Monti, S.; Grabner, G.; Protti, S.; Dondi,
D.; Dichiarante, V.; Fagnoni, M.; Albini, A. Chem.Eur. J. 2008, 14,
1029. (e) Shahzad, S. A.; Vivant, C.; Wirth, T. Org. Lett. 2010, 12, 1364.
(f) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Angew. Chem., Int. Ed. 2011,
50, 1702. (g) Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem. Soc. 2011,
133, 4702. (h) Singh, F. V.; Rehbein, J.; Wirth, T. ChemistryOpen 2012,
1, 245. (i) Jones, C.; Nguyen, Q.; Driver, T. G. Angew. Chem., Int. Ed.
2014, 53, 785 and ref 4b.
ASSOCIATED CONTENT
* Supporting Information
■
S
(8) Reviews: (a) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
(b) Fu, P. P.; Harvey, R. G. Chem. Rev. 1978, 78, 317. Selected
examples: (c) Merlini, L.; Cardillo, G.; Cricchio, R. Tetrahedron 1971,
27, 1875. (d) Lee, H.; Harvey, R. G. J. Org. Chem. 1988, 53, 4587.
(e) Temme, O.; Frohlich, R.; Laschat, S. J. Prakt. Chem. 1998, 340, 341.
(f) Utley, J. H. P.; Rozenberg, G. G. Tetrahedron 2002, 58, 5251.
(g) Barton, B.; Logie, C. G.; Schoonees, B. M.; Zeelie, B. Org. Process Res.
Dev. 2005, 9, 62. (h) Batista, V. S.; Crabtree, R. H.; Konezny, S. J.; Luca,
O. R.; Praetorius, J. M. New J. Chem. 2012, 36, 1141.
(9) For examples of allylic C−H bond oxidative activation with DDQ,
see: (a) Kiefer, E. F.; Lutz, F. E. J. Org. Chem. 1972, 37, 1519. (b) Iliefski,
T.; Li, S.; Lundquist, K. Tetrahedron Lett. 1998, 39, 2413. (c) Qin, C.;
Jiao, N. J. Am. Chem. Soc. 2010, 132, 15893. (d) Wang, T.; Xiang, S.-K.;
Qin, C.; Ma, J.-A.; Zhang, L.-H.; Jiao, N. Tetrahedron Lett. 2010, 52,
3208. (e) Liu, H.; Cao, L.; Sun, J.; Fossey, J. S.; Deng, W.-P. Chem.
Commun. 2012, 48, 2674. For an example of metal-free allylic
Full experimental details and characterization data. This material
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by both Basic Science Research
Program and Nano·Material Technology Department Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education and MSIP (Nos.
2012R1A1A2041471, 2012M3A7B4049654, and 2014-011165).
amination, see: (f) Souto, J. A.; Zian, D.; Muniz, K. J. Am. Chem. Soc.
̃
2012, 134, 7242.
(10) (a) Newcomb, M. Tetrahedron 1993, 49, 1151. (b) Hollis, R.;
Hughes, L.; Bowry, V. W.; Ingold, K. U. J. Org. Chem. 1992, 57, 4284.
(c) Masnovi, J.; Samsel, E. G.; Bullock, R. M. J. Chem. Soc., Chem.
Commun. 1989, 1044.
(11) Liwosz, T. W.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 2020.
(12) Owing to the structural feature of 2-alkenylanilines having
delocalized electron densities distributed along the extended conjugated
system, an alternative mechanistic pathway involving an electrophilic
addition of nitrogen radical cation to an alkene (via A′) cannot be
completely excluded.
REFERENCES
■
(1) (a) The Chemistry of Heterocyclic Compounds; Taylor, E. C., Saxton,
J. E., Eds.; Wiley-Interscience: New York, 1983 and 1994; Vol. 25.
(b) Sundberg, R. J. Indoles; Academic Press: New York, 1996.
(c) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010,
110, 4489.
(2) (a) Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29. (b) Shiri, M.
Chem. Rev. 2012, 112, 3508. (c) Platon, M.; Amardeil, R.; Djakovitch, L.;
D
dx.doi.org/10.1021/ol5015398 | Org. Lett. XXXX, XXX, XXX−XXX