Combination of Olefin Metathesis and Enzymatic Ester Hydrolysis in Aqueous Media
References
Angew. Chem. 2008, 120, 9693–9696; Angew. Chem.
Int. Ed. 2008, 47, 9551–9554; e) E. Burda, W. Bauer, W.
Hummel, H. Grçger, ChemCatChem 2010, 2, 67–72;
f) A. Prastaro, P. Ceci, E. Chiancone, A. Boffi, R. Ciril-
li, M. Colone, G. Fabrizi, A. Stringaro, S. Cacchi, Green
Chem. 2009, 11, 1929–1932.
[1] a) R. H. Grubbs, (Ed.), Handbook of Metathesis,
Wiley-VCH, Weinheim, 2003; b) S. Beligny, S. Blechert,
in: N-Heterocyclic Carbenes in Synthesis, (Ed.: S. P.
Nolan), Wiley-VCH, Weinheim, 2006, pp 1–22.
[2] Review: D. Burtscher, K. Grela, Angew. Chem. 2009,
121, 450–462; Angew. Chem. Int. Ed. 2009, 48, 442–454.
[3] a) B. Mohr, D. M. Lynn, R. H. Grubbs, Organometallics
1996, 15, 4317–4325; b) T. A. Kirkland, D. M. Lynn,
R. H. Grubbs, J. Org. Chem. 1998, 63, 9904–9909;
c) J. P. Jordan, R. H. Grubbs, Angew. Chem. 2007, 119,
5244–5247; Angew. Chem. Int. Ed. 2007, 46, 5152–5155.
[4] a) S. J. Connon, S. Blechert, Bioorg. Med. Chem. Lett.
2002, 12, 1873–1876; b) M. T. Zarka, O. Nuyken, R.
Weberskirch, Macromol. Rapid Commun. 2004, 25,
858–862.
[5] M. T. Mwangi, M. B. Runge, N. B. Bowden, J. Am.
Chem. Soc. 2006 128, 14434–14435.
[6] a) S. H. Hong, R. H. Grubbs, J. Am. Chem. Soc. 2006,
128, 3508–3509; b) D. Samanta, K. Kratz, X. Zhang, T.
Emrick, Macromolecules 2008, 41, 530–532.
[7] a) A.-F. Mingotaud, M. Krꢃmer, C. Mingotaud, J. Mol.
Catal. A 2007, 263, 39–47; b) S. Liu, J. Xiao, J. Mol.
Catal. A 2007, 270, 1–43; c) A.-F. Mingotaud, C. Mingo-
taud, W. Moussa, J. Polym. Sci. A 2008, 46, 2833–2844;
d) B. H. Lipshutz, G. T. Aguinaldo, S. Ghorai, K. Voig-
tritter, Org. Lett. 2008, 10, 1325–1328; e) B. H. Lip-
shutz, S. Ghorai, G. T. Aguinaldo, Adv. Synth. Catal.
2008, 350, 953–956; f) C. Airaud, V. Hꢄroguez, Y.
Gnanou, Macromolecules 2008, 41, 3015–3022; g) L.
Gulajski, P. Sledz, A. Lupa, K. Grela, Green Chem.
2008, 10, 271–274.
[8] a) M. Scholl, S. Ding, C. Woo Lee, R. H. Grubbs, Org.
Lett. 1999, 1, 953–956; b) A. K. Chatterjee, J. P.
Morgan, M. Scholl, R. H. Grubbs, J. Am. Chem. Soc.
2000, 122, 3783–3784; c) S. B. Garber, J. S. Kingsbury,
B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000,
122, 8168–8179.
[13] a) M. Kraußer, W. Hummel, H. Grçger, Eur. J. Org.
Chem. 2007, 5175–5179; b) K. Baer, M. Kraußer, E.
Burda, W. Hummel, A. Berkessel, H. Grçger, Angew.
Chem. 2009, 121, 9519–9522; Angew. Chem. Int. Ed.
2009, 48, 9355–9358.
[14] The synthetic concept for the synthesis of amino acids
starting from compound 3 and analogous consists of a
transformation into its monoamide and subsequent
Hofmann rearrangement.
[15] Varma et al. published the metathesis of 1a in water
using Grubbs II catalyst, leading to a high conversion
when using a catalyst loading of 4 mol%: V. Polshetti-
war, R. S. Varma, J. Org. Chem. 2008, 73, 7417–7419.
[16] Review article about the use of pig liver esterase in or-
ganic synthesis: P. Dominguez de Maria, C. A. Garcia-
Burgos, D. Bargeman, R. W. van Gemert, Synthesis
2007, 1439–1452.
[17] The development of a recombinant pig liver esterase is
reported in: a) A. Musidlowska, S. Lange, U. T. Born-
scheuer, Angew. Chem. 2001, 113, 2934–2936; Angew.
Chem. Int. Ed. 2001, 40, 2851–2853; b) A. Hummel, E.
Brꢀsehaber, D. Bçttcher, H. Trauthwein, K. Doderer,
U. T. Bornscheuer, Angew. Chem. 2007, 119, 8644–
8646; Angew. Chem. Int. Ed. 2007, 46, 8492–8494. In
our experiments a commercially available wild-type
preparation of the pig liver esterase was used which
contains several isoenzymes.
[18] The addition of water-soluble solvents turned out to be
suitable to improve selectivity and reactivity of PLE-
catalyzed hydrolysis reactions, see: a) M. Schneider, N.
Engel, H. Boensmann, Angew. Chem. 1984, 96, 54–55;
Angew. Chem. Int. Ed. Engl. 1984, 23, 66; b) R. Patel,
A. Banerjee, L. Chu, S. Brozozowski, V. Nanduri, L. J.
Szarka, J. Am. Oil Chem. Soc. 1998, 75, 1473–1482;
c) P. Dominguez de Maria, B. Kossmann, N. Potgrave,
S. Buchholz, H. Trauthwein, O. May, H. Grçger, Synlett
2005, 1746–1748.
[19] Notably, enzymatic hydrolysis of 1a proceeds slower
than for 2a, thus fulfilling one prerequisite for such an
envisioned tandem reaction in the future. For example,
for 1a we obtained a conversion of 4% after 1 h where-
as 27% of 2a were hydrolyzed in the same time in the
presence of PLE. A further prerequisite for a one-pot
process running in a tandem mode, however, is stability
of the metathesis catalyst under conditions of the bio-
transformation, which is also currently under investiga-
tion.
[9] V. Polshettiwar, R. S. Varma, J. Org. Chem. 2008, 73,
7417–7419.
[10] T. Brendgen, T. Fahlbusch, M. Frank, D. T. Schꢀhle, M.
Seßler, J. Schatz, Adv. Synth. Catal. 2009, 351, 303–307.
[11] a) P. Anastas, J. C. Warner, Green Chemistry: Theory
and Practice, Oxford University Press, Oxford, 1998;
b) P. Anastas, L. G. Heine, T. C. Williamson, Green
Chemical Syntheses and Processes, American Chemical
Society, Washington DC, 2000.
[12] a) M. Makkee, A. P. G. Kieboom, H. van Bekkum, J. A.
Roels, J. Chem. Soc. Chem. Commun. 1980, 930–931;
b) J. V. Allen, J. M. J. Williams, Tetrahedron Lett. 1996,
37, 1859–1862; c) C. Simons, U. Hanefeld, I. W. C. E.
Arends, T. Maschmeyer, R. A. Sheldon, Top. Catal.
2006, 40, 35–44; d) E. Burda, W. Hummel, H. Grçger,
Adv. Synth. Catal. 2011, 353, 2363 – 2367
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2367