3 P. G. Besant, P. V. Attwood and M. J. Piggott, Curr. Protein Pept.
Sci., 2009, 10, 536–550.
4 P. G. Besant and P. V. Attwood, Mol. Cell. Biochem., 2009, 329,
93–106.
5 T. E. McAllister, M. G. Nix and M. E. Webb, Chem. Commun.,
2011, 47, 1297–1299.
6 J. M. Kee, B. Villani, L. R. Carpenter and T. W. Muir, J. Am.
Chem. Soc., 2010, 132, 14327–14329.
7 J. Fuhrmann, A. Schmidt, S. Spiess, A. Lehner, K. Turgay,
K. Mechtler, E. Charpentier and T. Clausen, Science, 2009, 324,
1323–1327.
8 B. T. Wakim and G. D. Aswad, J. Biol. Chem., 1994, 269,
2722–2727.
9 B. T. Wakim, M. M. Picken and R. J. Delange, Biochem. Biophys.
Res. Commun., 1990, 171, 84–90.
10 M. E. Wilson and R. A. Consigli, Virology, 1985, 143, 516–525.
11 M. Sikorska and J. F. Whitfield, Biochim. Biophys. Acta, Protein
Struct. Mol. Enzymol., 1982, 703, 171–179.
12 F. Levyfavatier, M. Delpech and J. Kruh, Eur. J. Biochem., 1987,
166, 617–621.
13 A. Kumon, H. Kodama, M. Kondo, F. Yokoi and H. Hiraishi,
J. Biochem., 1996, 119, 719–724.
14 J. Bolte and G. M. Whitesides, Bioorg. Chem., 1984, 12,
170–175.
15 F. Cramer, A. Vollmar and E. Scheiffele, Chem. Ber., 1962, 95,
1670–1682.
16 Y. Liu, I. F. F. Lien, S. Ruttgaizer, P. Dove and S. D. Taylor, Org.
Lett., 2004, 6, 209–212.
Fig. 1 Overlay of a pArg rotamer onto the Src SH2 domain in a
complex with a pTyr containing peptide. ArgbB5 and ArgaA2 shown
in space filling representation.
17 A. Paquet, Int. J. Pept. Protein Res., 1992, 39, 82–86.
18 A. Paquet, B. Blackwell, M. Johns and J. Nikiforuk, J. Pept. Sci.,
1997, 50, 262–268.
19 A. Paquet and M. Johns, Int. J. Pept. Protein Res., 1990, 36,
97–103.
20 M. Ueki, K. Hashimoto and Y. Oka, Peptide Sci., 2004, 169–172.
21 R. B. Jones, A. Gordus, J. A. Krall and G. MacBeath, Nature,
2006, 439, 168–174.
22 J. M. Bradshaw, V. Mitaxov and G. Waksman, J. Mol. Biol., 1999,
293, 971–985.
23 L. Senderowicz, J. X. Wang, L. Y. Wang, S. Yoshizawa,
W. M. Kavanaugh and C. W. Turck, Biochemistry, 1997, 36,
10538–10544.
24 M. Hafner, E. Vianini, B. Albertoni, L. Marchetti, I. Grune,
C. Gloeckner and M. Famulok, Nat. Protoc., 2008, 3, 579–587.
25 J. A. Cruz-Aguado and G. Penner, Anal. Chem., 2008, 80,
8853–8855.
LysbD6 on either side of the aromatic ring (Fig. S14, ESIw).
While these cationic sidechains form stabilizing interactions
that contribute additional affinity for pTyr, we expect their
contribution on the basic portion of the pArg side chain to
instead be destabilizing due to direct electrostatic repulsion.
The lack of a favourable electrostatic environment for pArg is
further compounded by the greater loss of conformation
entropy required for localization of the phosphoryl group in
pArg relative to pTyr. Structural analysis of other SH2
domains may reveal those most suitable for pArg recognition,
on the basis of the chemical character of the side chains
forming the binding pocket.
In conclusion, we have presented a general method for the
synthesis of pArg-containing peptides using 1 as a building
block for SPPS coupled with selective deprotection of the
phosphoryl group. Affinity measurements based on fluorescence
polarization demonstrated phosphoryl group-dependent
recognition of an arginine-phosphorylated peptide by the
SH2 domain from Src kinase. This result in conjunction with
computational modelling suggests that pTyr-binding proteins
may serve as starting points for development of high-affinity
reagents for the detection of proteins with phosphorylated
arginine side chains.
26 T. J. Burke, K. R. Loniello, J. A. Beebe and K. M. Ervin, Comb.
Chem. High Throughput Screening, 2003, 6, 183–194.
27 D. Lesuisse, G. Lange, P. Deprez, D. Benard, B. Schoot,
G. Delettre, J. P. Marquette, P. Broto, V. Jean-Baptiste,
P. Bichet, E. Sarubbi and E. Mandine, J. Med. Chem., 2002, 45,
2379–2387.
28 R. L. Dunbrack and F. E. Cohen, Protein Sci., 1997, 6, 1661–1681.
29 A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson,
R. Jacak, K. Kaufman, P. D. Renfrew, C. A. Smith, W. Sheffler,
I. W. Davis, S. Cooper, A. Treuille, D. J. Mandell, F. Richter,
Y. E. Ban, S. J. Fleishman, J. E. Corn, D. E. Kim, S. Lyskov,
M. Berrondo, S. Mentzer, Z. Popovic, J. J. Havranek,
´
J. Karanicolas, R. Das, J. Meiler, T. Kortemme, J. J. Gray,
B. Kuhlman, D. Baker and P. Bradley, Methods Enzymol., 2011,
487, 545–574.
We would like to thank R.S. Goody for financial support,
H.D. Arndt and M.M. Muller for critical comments and
¨
30 T. Gilmer, M. Rodriquez, S. Jordan, R. Crosby, K. Alligood,
M. Green, M. Kimery, C. Wagner, D. Kinder, P. Charifson,
A. M. Hassell, D. Willard, M. Luther, D. Rusnak,
D. D. Sternbach, M. Mehrotra, M. Peel, L. Shampine, R. Davis,
J. Robbins, I. R. Patel, D. Kassel, W. Burkhart, M. Moyer,
T. Bradshaw and J. Berman, J. Biol. Chem., 1994, 269,
31711–31719.
S. Gentz for technical assistance. F.T. Hofmann was supported
by the International Max Planck Research School in Chemical
Biology. J.K. was supported by the Alfred P. Sloan Fellowship.
Notes and references
1 H. R. Matthews, Pharmacol. Ther., 1995, 67, 323–350.
2 P. V. Attwood, M. J. Piggott, X. L. Zu and P. G. Besant,
Amino Acids, 2007, 32, 145–156.
31 I. Catrina, P. J. O’Brien, J. Purcell, I. Nikolic-Hughes,
J. G. Zalatan, A. C. Hengge and D. Herschlag, J. Am. Chem.
Soc., 2007, 129, 5760–5765.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10335–10337 10337