Organometallics
ARTICLE
performed at the Service de Spectromꢀetrie de Masse de l’Institut de
Chimie de Strasbourg and run in a positive mode: samples were prepared
by mixing a solution of the polymers in CH2Cl2 with a 0.5 mg/100 mL
concentration, and 2,5-dihydroxybenzoic acid (DHB) was used as the
matrix in a 5/1 volume ratio. Al(NMe2)3 was prepared according to a
literature procedure.12
SEC chromatograms of PTMC and PTMC-PEG polymers,
and crystal data and refinement details for complex 2a. This
material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
(RNH-C6H4)2O (1a, R = C5H9; 1b, R = C6H11). The bis-amino-
ether ligands were synthesized in good yields via a one-step procedure from
2,20-oxidianiline, (H2N-C6H4)2O, according to a literature procedure.8
{η3(N,O,N)-(C5H9)N-C6H4}2OAlNMe2 (2a). In a nitrogen-filled
glovebox, the ligand 1a (4.26 mmol) was charged in a Schlenk flask and a
toluene solution (10 mL) of Al(NMe2)3 (677 mg, 4.26 mmol) was added
to yield a colorless solution. The reaction mixture was then heated for 24 h
at 90 °C in an oil bath to yield a pale yellow solution that was sub-
sequently cooled to room temperature and evaporated to dryness in
vacuo, affording an off-white solid residue. The latter was washed with
pentane and further dried under vacuum to afford the Al complex 2a as
an analytically pure colorless solid (1.02 g, 60% yield). 1H NMR (300 MHz,
Corresponding Author
*E-mail: dagorne@unistra.fr.
’ ACKNOWLEDGMENT
We thank the CNRS and The University of Strasbourg for
financial support.
’ REFERENCES
(1) (a) Lindblad, M. S.; Liu, Y.; Albertsson, A.-C.; Ranucci, E.;
Karlsson, S. Adv. Polym. Sci. 2002, 157, 139. (b) Vert, M. Biomacromol-
ecules 2005, 6, 538. (c) Nair, L. S.; Laurencin, C. T. Prog. Polym. Sci.
2007, 32, 762.
(2) (a) O’Keele, B. J.; Hillmeyer, M. A.; Tolman, W. B. Dalton Trans.
2001, 2215. (b) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D.
Chem. Rev. 2004, 104, 6147. (c) Wu, J.; Yu, T.-L.; Chen, C.-T.; Lin, C.-C.
Coord. Chem. Rev. 2006, 205, 602. (d) Dove, A. P. Chem. Commun.
2008, 6446. (e) Platel, R. H.; Hodgson, L. M.; Williams, C. K. Polym.
Rev. 2008, 48, 11. (f) Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165.
(g) Arbaoui, A.; Redshaw, C. Polym. Chem. 2010, 1, 801.
(3) (a) Yang, J.; Yu, Y.; Li, Q.; Li, Y.; Cao, A. J. Polym. Sci. A: Polym.
Chem. 2005, 43, 373. (b) Darensbourg, D. J.; Ganguly, P.; Billodeaux, D.
Macromolecules 2005, 38, 5406. (c) Palard, I.; Schappacher, M.; Belloncle,
B.; Soum, A.; Guillaume, S. M. Chem. Eur. J. 2007, 13, 1511. (d) Helou,
M.; Miserque, O.; Brusson, J.-M.; Guillaume, S. M.; Carpentier, J.-F.
Chem. Eur. J. 2008, 14, 8772. (e) Darensbourg, D. J.; Choi, W.;
Karroonnirun, O.; Bhuvanesh, N. Macromolecules 2008, 41, 3493.
(f) Helou, M.; Miserque, O.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume,
S. M. Adv. Synth. Catal. 2009, 351, 1312. (g) Helou, M.; Miserque, O.;
Brusson, J.-M.; Guillaume, S. M.; Carpentier, J.-F. ChemCatChem 2010,
2, 306. (h) Koller, J.; Bergman, R. G. Organometallics 2011, 30, 3217.
(4) (a) P^ego, A. P.; Poot, A. A.; Grijpma, D. W.; Feijen, J. J. Controlled
Release 2003, 87, 69. (b) Tyson, T.; Finne-Wistrand, A.; Albertsson, A.-C.
Biomacromolecules 2009, 10, 149.
(5) (a) Zhang, Z.; Grijpma, D. W.; Feijen, J. J. Controlled Release
2006, 112, 57. (b) Zhang, H.-H.; Huang, Z.-Q.; Sun, B.-W.; Guo, J.-X.;
Wang, J.-L.; Chen, Y.-Q. J. Polym. Sci. A: Polym. Chem. 2008, 46, 8131.
(c) Tyrrell, Z. L.; Shen, Y.; Radosz, M. Prog. Polym. Sci. 2010, 35, 1128.
(6) Only a few N,N,N-supported Al complexes have been reported
and used in catalysis; see: (a) Emig, N.; Nguyen, H.; Krautscheid, H.;
Rꢀeau, R.; Cazaux, J.-B.; Bertrand, G. Organometallics 1998, 17, 3599.
(b) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121,
9742. (c) Nelson, S. G.; Kim, B.-K.; Peelen, T. J. J. Am. Chem. Soc. 2000,
122, 9318.
CD2Cl2): δ 7.47 (dd, 3JHH = 8.1 Hz, 4JHH = 1.5 Hz, 2H), 7.10 (dt, 3JHH
=
8.1 Hz, 4JHH = 1.5 Hz, 2H), 6.73 (dd, 3JHH = 8.1 Hz, 4JHH = 1.5 Hz, 2H),
6.50 (dt, 3JHH = 8.1 Hz, 4JHH = 1.5 Hz, 2H), 3.83 (q, 3JHH = 7.5 Hz, 2H),
2.56 (s, 6H, AlꢀNMe2), 1.40ꢀ2.40 (m, 16H). 13C NMR (300 MHz,
CD2Cl2): δ 146.4 (Cipso), 146.3 (Cipso), 127.9 (Ar), 117.5 (Ar), 113.0
(Ar), 56.6 (CH-C5H9), 40.2 (Al-NMe2), 34.2 (C5H9), 34.1 (C5H9),
25.1 (C5H9), 24.9 (C5H9). Anal. Calcd for C24H32AlN3O: C, 71.08; H,
7.95; N, 10.36. Found: C, 70.96; H, 8.07; N, 9.57.
{η3(N,O,N)-(C6H11)N-C6H4}2OAlNMe2 (2b). The Alamidocom-
plex 2b was synthesized by following a procedure identical with that used
for compound 2a using equimolar amounts of ligand 1b (550 mg, 1.51
mmol) and Al(NMe2)3 (240 mg) to afford the Al complex 2b in a pure
1
form as a colorless solid (445 mg, 68% yield). H NMR (300 MHz,
CD2Cl2): δ 7.43 (dd, 3JHH = 8.1 Hz, 4JHH = 1.5 Hz, 2H), 7.05 (dt, 3JHH
=
8.1 Hz, 4JHH = 1.5 Hz, 2H), 6.70 (dd, 3JHH = 8.1 Hz, 4JHH = 1.5 Hz, 2H),
6.49 (dt, 3JHH = 8.1 Hz, 4JHH = 1.5 Hz, 2H), 3.26 (q, 3JHH = 7.5 Hz, 2H),
2.56 (s, 6H), 1.10ꢀ2.30 (m, 20H). 13C NMR (300 MHz, CD2Cl2):
δ 146.4 (Cipso), 145.5 (Cipso), 127.9 (Ar), 117.9 (Ar), 112.9 (Ar), 112.6
(Ar), 54.1 (CH-Cy), 40.7 (Al-NMe2), 34.2 (Cy), 34.0 (Cy), 26.7 (Cy),
26.5(Cy), 26.1 (Cy). Anal. Calcd for C24H32AlN3O: C, 72.03; H, 8.37;N,
9.69. Found: C, 71.85; H, 8.14; N, 9.04.
Typical Procedure for Trimethylene Carbonate Polymer-
ization by Al Complexes 2a,b. In a glovebox, an appropriate
amount of species 2a,b was charged in a vial equipped with a Teflon-
tight screw cap and a TMC/ROH dichloromethane solution (prepared
in such a way that [TMC]0 = 1 M) was quickly added via a syringe all at
once. The resulting colorless solution was vigorously stirred at room tem-
perature for 30 min. The reaction mixture was then quenched with
MeOH, provoking the precipitation of the polymer. After filtration
through a glass frit, the latter material was washed several times with
MeOH, dried in vacuo to constant weight, and subsequently analyzed by
1H NMR, SEC, and MALDI-TOF spectrometry.
Determination of the Correcting Factor X for m-PEG(5000)
Correlating Mn,obs(GPC) (using PS Standards Calibration)
with the Real Mn. This was performed according to a well-established
literature procedure,3c,11a,11b as follows: the real molecular weight
number for the monocapped methoxy ether PEG-OH(5000) (m-PEG-
(5000)) was determined via MALDI-TOF spectrometry (Mn = 5030),
while GPC (PS standards) analysis of m-PEG(5000) yielded Mn = 8225
along with PDI = 1.04. The factor was thus determined to be 0.61 (i.e.,
5030/8225).
(7) (a) Dagorne, S. Low-Coordinated Group 13 Compounds. In
Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R. B., Ed.; Wiley:
New York, 2005; p 2714. (a) Dagorne, S.; Atwood, D. A. Chem. Rev.
2008, 108, 4037.
(8) (a) Hild, F.; Haquette, P.; Brelot, L.; Dagorne, S. Dalton Trans.
2010, 39, 533. (b) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L.-C.;
Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 7822.
(9) For a perspective on immortal metal-catalyzed ROP of cyclic
esters and carbonates, see: Ajellal, N.; Carpentier, J.-F.; Guillaume, C.;
Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A. Dalton
Trans. 2010, 39, 8363.
(10) ForrepresentativeX-ray-characterizedcompoundsfeaturing term-
inal AlꢀN amido bonds, see: (a) Krossing, I.; N€oth, H.; Schwenk-Kircher,
H. Eur. J. Inorg. Chem. 1998, 927. (b) Wehmschulte, R. J.; Power, P. P.
Inorg. Chem. 1998, 37, 6906. (c) Liang, L.-C.; Huang, M.-H.; Hung, C.-H.
’ ASSOCIATED CONTENT
S
Supporting Information. Figures, tables, and a CIF file
b
giving the MALDI-TOF spectrum of PTMC, representative
5461
dx.doi.org/10.1021/om200703d |Organometallics 2011, 30, 5457–5462