3382
P.B. Kraikivskii et al. / Journal of Organometallic Chemistry 696 (2011) 3376e3383
6
6
5
5
4
4
7
7
8
8
3
3
9
9
2
2
12
11
12
11
10
10
13
N
N
14
N
1
N
2
14
1
1
1
2
13
Ni
17
15
15
16
OC
CO
Fig. 7. Numbering scheme of atoms in pphen.
Fig. 6. Numbering scheme of atoms in 2.
13C NMR (150 MHz, THF-D8, 297 K):
d
¼ 150.46 (C1), 123.44 (C2),
The obtained complex 2 is stable in argon and decomposes
readily in air with formation of smoke.
136.34 (C3),129.98 (C4), 126.45 (C5),127.17 (C6),128.30 (C7),136.71
(C8), 121.13 (C9), 156.83 (C10), 147.30 (C11), 147.73 (C12), 133.52
(C13), 132.66 (C14), 18.68 (C15) ppm (Fig. 6).
Decomp. 60e65 ꢀC. C17H14N2NiO2 (336.9): calc. C 60.59, H 4.19,
N 8.31, Ni 17.42; found C 59.80, H 4.25, N 7.96, Ni 17.36.
MS (70 eV): m/z (%) ¼ 28(43.0), 41(6.9), 59(11.8), 149(6.3),
181(100.0), 219(30.9), 279(3.2).
1He15N-HMBC (1H-500 MHz, 15N-50.7 MHz THF-D8, 297 K):
d
¼ ꢂ65 (N1), 9.06 (H1); ꢂ77 (N2), 6.84 (H13) ppm (Fig. 7).
IR (KBr) cmꢂ1: 3416(vs), 3042(m), 2963(s), nCO(sym)1969(s),
nCO(asym)1886(s), 1261(s), 1090(w), 1020(w), 800(s).
Acknowledgements
1H NMR (600 MHz, THF-D8, 297 K):
d
¼
9.58 (dd,
4
3JH1eH2 ¼ 4.90 Hz, JH1eH3 ¼ 1.36 Hz, 1H, CH1), 7.81 (dd,
This work was supported by the Federal Target Program
“Research and Training Specialists in Innovative Russia,
2009e2013”, (The contract # 14.740.11.0619 for 05.10. 2010). We
thank Vsevolod Sorokin for the development and making of
exclusive glass equipment for the experiments.
3
3JH2eH3
3JH3eH2
¼
¼
8.03 Hz, JH2eH1 ¼ 4.86Hz, 1H, CH2), 8.42 (dd,
4
8.08 Hz, JH3eH1 ¼ 1.35 Hz, 1H, CH3), 7.90 (d,
3JH5eH6 ¼ 8.85 Hz, 1H, CH5), 7.88 (d, JH6eH5 ¼ 8.85 Hz, 1H, CH6),
3
3
3
8.37 (d, JH8eH9 ¼ 8.47 Hz, 1H, CH8), 8.14 (d, JH9eH8 ¼ 8.5 Hz, 1H,
CH9), 7.98 (dk, 3JH13eH14 ¼ 16.20 Hz, 4JH13eH15 ¼ 1.60 Hz, 1H, CH13),
3
3
6.92 (dk, JH14eH13 ¼ 16.30 Hz, JH14eH15 ¼ 6.80 Hz 1H, CH14), 2.12
Appendix A. Supplementary material
3
4
(dd, JH15eH14 ¼ 6.79 Hz, JH15eH13 ¼ 1.76 Hz, 3H, CH315) ppm
(Fig. 6).
CCDC 774489 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
13C NMR (150 MHz, THF-D8, 297 K):
d
¼
152.49 (d,
1JCH ¼ 183.56 Hz, C1), 124.80 (d, JCH ¼ 167.58Hz, C2), 134.84 (d,
1
1JCH ¼ 165.88 Hz, C3),130.66 (s, C4), 126.51 (d, 1JCH ¼ 163.48 Hz, C5),
1
127.27 (d, JCH ¼ 162.46 Hz, C6), 129.06 (s, C7), 135.30 (d,
1JCH ¼ 165.18 Hz, C8), 120.84 (d, JCH ¼ 164.84 Hz, C9), 157.38 (s,
1
Appendix. Supplementary material
C10), 145.08 (s, C11), 145.45 (s, C12), 135.10 (d, 1JC13eH13 ¼ 160.16 Hz,
C13), 134.37 (dk, 1JC14eH14 ¼ 151.93 Hz, JC14e3H15 ¼ 7.78 Hz, C14),
2
Supplementary data associated with this article can be found, in
data include MOL files and InChIKeys of the most important
compounds described in this article.
19.30 (dk, 1JC15e3H15 ¼127.66 Hz, 2JC15eH14 ¼ 7.28 Hz, C15),196.87 (s,
C16, C17) ppm (Fig. 6).
1He15N-HMBC (1H-500 MHz, 15N-50.7 MHz THF-D8, 297 K):
d
¼ ꢂ112 (N1), 9.58 (H1); ꢂ117 (N2), 8.14 (H9) ppm (Fig. 6).
References
4.4. Synthesis of pphen
[1] L.K. Johnson, C.M. Killian, M. Brookhart, J. Am. Chem. Soc. 117 (1995)
6414e6415.
Crystalline adduct of 2 and pphen (0.90 g) was dissolved in 5 ml
of diethyl etherehexane (1:1 v/v). The prepared solution was
subjected to the separation with preparative column chromatog-
raphy (aluminum oxide, height 4 cm, d 25 mm). Red complex 2 was
retained in the upper part of the aluminum oxide column. The
eluent (etherehexane) failed to wash it away, whereas the eluate
contained pphen. Vacuum evaporation of the eluate gave a light
yellow powder which was further recrystallized from heptane.
Yield 0.32 g, 90%.
[2] Johnson, L.K.; Bennett, M.A.; Ittel, S.D.; Wang, L.; Parthasarathy, A.; Hauptman,
E.; Simpson, R.D.; Feldman, J.; Coughlin, E.B. DuPont, WO98/30609 (1998).
[3] S.D. Ittel, L.K. Johnson, M. Brookhart, Chem. Rev. 100 (2000) 1169e1203.
[4] Z. Guan, C.S. Popeney, Top. Organomet. Chem. 26 (2009) 179e220.
[5] (a) F. Blank, C. Janiak, Coord. Chem. Rev. 253 (2009) 827e861;
(b) Y. Yang, P. Yang, C. Zhang, G. Li, X.-J. Yang, B. Wu, C. Janiak, J. Mol. Cat. A:
Chem. 296 (2008) 9e17.
[6] H.-Y. Wang, X. Meng, G.-X. Jin, Dalton Trans. (2006) 2579e2585.
[7] L. Li, P.T. Gomes, M.A.N.D.A. Lemos, F. Lemos, Z. Fan, Macromol. Chem. Phys.
212 (2011) 367e374.
ꢀ
[8] (a) G. Wilke, B. Bogdanovic, Angew. Chem. 73 (1961) 756;
1H NMR (500 MHz, THF-D8, 297 K):
d
¼
9.06 (dd,
ꢀ
(b) G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kröner,
W. Oberkirch, K. Tanaka, E. Steinrücke, D. Walter, H. Zimmermann, Angew.
Chem. Int. Ed. Engl. 5 (1966) 151e164;
4
3JH1eH2
3JH2eH3
3JH3eH2
¼
¼
¼
4.30Hz, JH1eH3
¼
1.76 Hz, 1H, CH1), 7.58 (dd,
3
8.10 Hz, JH2eH1 ¼ 4.27 Hz, 1H, CH2), 8.25 (dd,
(c) G. Wilke, Angew. Chem. Int. Ed. 27 (1988) 185e206.
[9] A.R. O’Connor, S.A. Urbin, R.A. Moorhouse, P.S. White, M. Brookhart, Organo-
metallics 28 (2009) 2372e2384.
[10] (a) I. Pairing, A. Moreno, P.S. Pregosin, B. Fuentes, L.F. Veiros, A. Albinati,
S. Rizzato, Organometallics 28 (2009) 6489e6506;
(b) S. Filipuzzi, P.S. Pregosin, A. Albinati, S. Rizzato, Organometallics 27 (2008)
437e444.
[11] (a) F. Meyer, H. Kozlowski, Compr. Coord. Chem. 6 (2004) 247e554;
(b) D. Zargarian, Compr. Organomet. Chem. 8 (2007) 133e196.
[12] V.R. Flid, V.B. Kuznetsov, D.V. Dmitriev, Kinet. Catal. 40 (1999) 301e307.
4
8.10 Hz, JH3eH1 ¼ 1.75 Hz, 1H, CH3), 7.75 (d,
3JH5eH6 ¼ 8.80 Hz, 1H, CH5), 7.76 (d, JH6eH5 ¼ 8.80 Hz, 1H, CH6),
8.19 (d, 3JH8eH9 ¼ 8.30 Hz, 1H, CH8), 7.66 (d, 3JH9eH8 ¼ 8.30 Hz, 1H,
CH9), 6.84 (dk, 3JH13eH14 ¼ 15.50 Hz, 4JH13eH15 ¼ 1.72 Hz, 1H, CH13),
3
3
3
7.17 (dk, JH14eH13 ¼ 15.50 Hz, JH14eH15 ¼ 6.82 Hz 1H, CH14), 2.0
3
4
(dd, JH15eH14 ¼ 6.77 Hz, JH15eH13 ¼ 1.75 Hz, 3H, CH315) ppm
(Fig. 7).