1620
Y. Zhang, et al.: Peptide Ion Dissociation
prohibition of backbone cleavage occurs to derivatized
peptide ions, extensive c/z ions can still be seen for ECD
of selenamide-derivatized protein ions, as we will report
in due course.
Carbohydrate Side Chains and Disulfide Linkages. Int. J. Mass
Spectrom. 278, 109–133 (2008)
9. Qiao, L.; Bi, H.; Busnel, J. M.; Liu, B.; Girault, H. H. In-Source
Photocatalytic Reduction of Disulfide Bond During Laser Desorption
Ionization. Chem. Commun. 2008, 6357–6359.
10. Ueberheide, B.M., Fenyo, D., Alewood, P.F., Chait, B.T.: Rapid
Sensitive Analysis of Cysteine Rich Peptide Venom Components. Proc.
Natl. Acad. Sci. U.S.A. 106, 6910–6915 (2009)
11. Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.:
Peptide and Protein Sequence Analysis by Electron Transfer Dissoci-
ation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 101, 9528–9533
(2004)
12. Vasicek, L., Brodbelt, J.S.: Enhanced Electron Transfer Dissociation
Through Fixed Charge Derivatization of Cysteines. Anal. Chem. 81,
7876–7884 (2009)
13. Diedrich, J.K., Julian, R.R.: Site Selective Fragmentation of Peptides
and Proteins at Quinone Modified Cysteine Residues Investigated by
ESI MS. Anal. Chem. 82, 4006–4014 (2010)
14. Simek, P., Husek, P., Zahradnickova, H.: Gas Chromatographic-Mass
Spectrometric Analysis of Biomarkers Related to Folate and Cobalamin
Status in Human Serum after Dimercaptopropanesulfonate Reduction
and Heptafluorobutyl Chloroformate Derivatization. Anal. Chem. 80,
5776–5782 (2008)
15. Williams Jr., D.K., Meadows, C.W., Bori, I.D., Hawkridge, A.M.,
Comins, D.L., Muddiman, D.C.: Synthesis, Characterization, and
Application of Iodoacetamide Derivatives Utilized for the ALiPHAT
Strategy. J. Am. Chem. Soc. 130, 2122–2123 (2008)
Conclusions
In conclusion, unimolecular ion dissociation behaviors of
selenamide-labeled thiol peptide ions upon CID and ETD
were investigated. It is evident that derivatized peptide
cations undergo tag-dependent CID dissociation pathways.
Ebselen-derivatized peptide cations display the unique frag-
ment ion of m/z 276 upon dissociation, which is useful for
selective identification of thiol peptides and proteins in
mixture. The robust phenylselenenyl tag is useful in peptide
sequencing and locating of cysteine residues in peptides. In
the negative ion mode CID, both types of tags are
preferentially lost via the Se–S cleavage, similar to S–S
bond. In addition, the preferential cleavage of Se–S bond
occurs over the formation of c/z ions during ETD activation
to both protonated and alkaliated peptides, following the
Utah-Washington mechanism. Given the significance of
thiol residues in proteins/peptides, the selective derivatiza-
tion by selenamides and the rich ion dissociation chemistry
revealed in this study would be useful in the proteomics
research.
16. Lane, A., Nyadong, L., Galhena, A.S., Shearer, T.L., Stout, E.P., Parry,
R.M., Kwasnik, M., Wang, M.D., Hay, M.E., Fernandez, F.M.,
Kubanek, J.: Desorption Electrospray Ionization Mass Spectrometry
Reveals Surface-Mediated Antifungal Chemical Defense of a Tropical
Seaweed. Proc. Natl. Acad. Sci. U.S.A. 106, 7314–7319 (2009)
17. Seiwert, B., Hayen, H., Karsta, U.: Differential Labeling of Free and
Disulfide-Bound Thiol Functions in Proteins. J. Am. Soc. Mass
Spectrom. 19, 1–7 (2008)
18. Jha, S.K., Udgaonkar, J.B.: Exploring the Cooperativity of the Fast
Folding Reaction of a Small Protein Using Pulsed Thiol Labeling and
Mass Spectrometry. J. Biol. Chem. 282, 37479–37491 (2007)
19. Sevcikova, P., Glatz, Z., Tomandl, J.: Determination of Homocysteine
in Human Plasma by Micellar Electrokinetic Chromatography and In-
Capillary Detection Reaction with 2,2'-Dipyridyl Disulfide. J. Chroma-
togr. A 990, 197–204 (2003)
20. Xu, K., Zhang, Y., Tang, B., Laskin, J., Roach, P.J., Chen, H.: Study of
Highly Selective and Efficient Thiol Derivatization Using Selenium
Reagents by Mass Spectrometry. Anal. Chem. 82, 6926–6932 (2010)
21. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron Capture
Dissociation of Multiply Charged Protein Cations. A Nonergodic
Process. J. Am. Chem. Soc. 120, 3265–3266 (1998)
22. Chen, X.H., Turecek, F.: The Arginine Anomaly: Arginine Radicals are
Poor Hydrogen Atom Donors in Electron Transfer Induced Dissocia-
tions. J. Am. Chem. Soc. 128, 12520–12530 (2006)
23. Sawicka, A., Skurski, P., Hudgins, R.R., Simons, J.: Model Calcu-
lations Relevant to Disulfide Bond Cleavage Via Electron Capture
Influenced by Positively Charged Group. J. Phys. Chem. B 107, 13505–
13511 (2003)
24. Sohn, C.H., Chung, C.K., Yin, S., Ramachandran, P., Loo, J.A.,
Beauchamp, J.L.: Probing the Mechanism of Electron Capture and
Electron Transfer Dissociation Using Tags with Variable Electron
Affinity. J. Am. Chem. Soc. 131, 5444–5459 (2009)
25. Iavarone, A.T., Paech, K., Williams, E.R.: Effects of Charge State and
Cationizing Agent on the Electron Capture Dissociation of a Peptide.
Anal. Chem. 76, 2231–2238 (2004)
26. Chamot-Rooke, J., Malosse, C., Frison, G., Turecek, F.: Electron
Capture in Charge-Tagged Peptides. Evidence for the Role of Excited
Electronic States. J. Am. Soc. Mass Spectrom. 18, 2146–2161 (2007)
27. Xia, Y., Gunawardena, H.P., Erickson, D.E., McLuckey, S.A.: Effects
of Cation Charge-Site Identity and Position on Electron-Transfer
Dissociation of Polypeptide Cations. J. Am. Chem. Soc. 129, 12232–
12243 (2007)
28. Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.
M., Carpenter, B.K., McLafferty, F.W.: Electron Capture Dissociation
of Gaseous Multiply-Charged Proteins is Favored at Disulfide Bonds
and Other Sites of High Hydrogen Atom Affinity. J. Am. Chem. Soc.
121, 2857–2862 (1999)
Acknowledgments
The authors gratefully acknowledge support of this work by
NSF (CHE-0911160). Y.Z. and H.C. are thankful to
Professor Michael L. Gross for the access to the NIH/NCRR
Mass Spectrometry Resources at Washington University in
St. Louis (grant number 2P41RR000954).
References
1. Basford, R.E., Huennekens, F.M.: Studies on thiols. I. Oxidation of
Thiol groups by 2,6-Dichlorophenol Indophenol. J. Am. Chem. Soc. 77,
3873–3877 (1955)
2. Gorman, J.J., Wallis, T.P., Pitt, J.J.: Protein Disulfide Bond Determi-
nation by Mass Spectrometry. Mass Spectrom. Rev. 21, 183–216 (2002)
3. Bilusich, D., Bowie, J.H.: Fragmentations of (M – H)– Anions of
Underivatized Peptides. Part 2: Characteristic Cleavages of Ser and Cys
and of Disulfides and Other Post-Translational Modifications, Together
with Unusual Internal Processes. Mass Spectrom. Rev. 28, 20–34 (2009)
4. Diedrich, J.K., Julian, R.R.: Site-Specific Radical Directed Dissociation
of Peptides at Phosphorylated Residues. J. Am. Chem. Soc. 130, 12212–
12213 (2008)
5. Gunawardena, H.P., O’Hair, R.A.J., McLuckey, S.A.: Selective Disulfide
Bond Cleavage in Gold(I) Cationized Polypeptide Ions Formed Via Gas-
Phase Ion/Ion Cation Switching. J. Proteome Res. 5, 2087–2092 (2006)
6. Kim, H.I., Beauchamp, J.L.: Identifying the Presence of a Disulfide
Linkage in Peptides by the Selective Elimination of Hydrogen Disulfide
from Collisionally Activated Alkali and Alkaline Earth Metal Com-
plexes. J. Am. Chem. Soc. 130, 1245–1257 (2008)
7. Chrisman, P.A., McLuckey, S.A.: Dissociations of Disulfide-Linked
Gaseous Polypeptide/Protein Anions: Ion Chemistry with Implications
for Protein Identification and Characterization. J. Proteome Res. 1, 549–
557 (2002)
8. Li, J., Shefcheck, K., Callahan, J., Fenselau, C.: Extension of Micro-
wave-Accelerated Residue-Specific Acid Cleavage to Proteins with