R.C. Jones et al. / Inorganica Chimica Acta 376 (2011) 290–295
295
4.1.2.3. PdI2(4-Me-pyCH2 SMe-N,S) (4). Purple solid (0.14 g, 97%):
Appendix A. Supplementary material
Anal. Calc. C, 18.71; H, 2.16; N, 2.73. Found: C, 18.78; H, 2.19; N,
2.75%. LSIMS m/z 387 [MꢀI]+, [12C8 H11126I14N32S106Pd 387].
1
CCDC 810125, 810126, 810127, 810128, 810129, 810130,
810131 and 810132 contain the supplementary crystallog-
raphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
4.1.2.4. PdI2(6-MepyCH2SMe-N)2 (5). Purple solid (0.16 g, 85%):
Anal. Calc. C, 28.82; H, 3.33; N, 4.20. Found: C, 28.88; H, 3.38; N,
1
4.15%. LSIMS m/z 540 [MꢀI]+, [12C16 H22
I
126 14N232S2106Pd 540].
References
4.1.2.5. PdI2(6-MeCH2SPh-N)2 (6). Purple solid (0.19 g, 87%): Anal.
Calc. C, 39.49; H, 3.31; N, 3.54. Found: C, 39.54; H, 3.40; N,
[1] (a) K. Kahlmann, H. Sigel, H. Erlenmeyer, Helv. Chim. Acta 47 (1964) 1755;
(b) P.S.K. Chia, S.E. Livingstone, T.N. Lockyer, Aust. J. Chem. 20 (1967) 230;
(c) E.W. Ainscough, E.N. Baker, A.M. Brodie, N.G. Larsen, J. Chem. Soc., Dalton
Trans. (1981) 1746;
3.57%. LSIMS m/z 664 [MꢀI]+, [12C26 H26126I14N232S2106Pd 664].
1
4.1.3. PtCl2(L) (7, 8)
(d) J. Schaubroeck, A.M. Goeminne, Thermochim. Acta 56 (1982) 25;
(e) R.C. Jones, B.W. Skelton, V.-A. Tolhurst, A.H. White, A.J. Wilson, A.J. Canty,
Polyhedron 26 (2007) 708.
Suspensions of PtCl2 (0.10 g, 0.38 mmol) and ligand
(0.42 mmol) in dry acetonitrile (25 mL) were stirred for 12 h at
room temperature to give yellow solutions. The volume was re-
duced to ca. 5 mL in a vacuum, and diethyl ether added to precip-
itate the complexes which were collected by filtration and washed
with diethyl ether.
[2] (a) L. Canovese, L. Cattalini, F. Visentin, P. Uguagliati, L. Gemelli, Inorg. Chim.
Acta 235 (1995) 29;
(b) L. Canovese, G. Chessa, F. Visentin, P. Uguagliati, Coord. Chem. Rev. 248
(2004) 945.
[3] (a) L. Canovese, F. Visentin, P. Uguagliati, G. Chessa, V. Lucchini, G. Bandoli,
Inorg. Chim. Acta 275–276 (1998) 385;
(b) L. Canovese, F. Visentin, P. Uguagliati, G. Chessa, A. Pesce, J. Organomet.
Chem. 566 (1998) 61;
(c) L. Canovese, F. Visentin, G. Chessa, P. Uguagliati, A. Dolmella, J. Organomet.
Chem. 601 (2000) 1;
(d) L. Canovese, F. Visentin, G. Chessa, P. Uguagliati, G. Bandoli, Organometallics
19 (2000) 1461;
(e) L. Canovese, F. Visentin, C. Santo, G. Chessa, P. Uguagliati, Polyhedron 20
(2001) 3171;
4.1.3.1. PtCl2(6-MepyCH2 SMe-N,S) (7). Pale yellow solid (0.12 g,
78%): Anal. Calc. C, 22.92; H, 2.64; N, 3.34. Found: C, 22.81; H,
2.59; N, 3.44%. LSIMS m/z 384 [MꢀCl]+, [12C8 H1135Cl14N32S195Pt
1
384].
(f) L. Canovese, F. Visentin, G. Chessa, C. Santo, P. Uguagliati, L. Maini, M. Polito,
J. Chem. Soc., Dalton Trans. (2002) 3696;
(g) L. Canovese, V. Lucchini, C. Santo, F. Visentin, A. Zambon, J. Organomet.
Chem. 642 (2002) 58;
(h) L. Canovese, F. Visentin, G. Chessa, C. Santo, P. Uguagliati, G. Bandoli, J.
Organomet. Chem. 650 (2002) 43;
4.1.3.2. PtCl2(6-MepyCH2 SPh-N,S) (8). Pale yellow solid (0.17 g,
82%): Anal. Calc. C, 32.44; H, 2.72; N, 2.91. Found: C, 32.48; H,
2.79; N, 2.98%. LSIMS m/z 446 [MꢀI]+, [12C13 H1335Cl14N32S195Pt
1
446].
(i) L. Canovese, G. Chessa, C. Santo, F. Visentin, P. Uguagliati, Inorg. Chim. Acta
346 (2003) 158;
(j) T. Gosavi, E. Rusanov, H. Schmidt, D. Steinborn, Inorg. Chim. Acta 357 (2004)
1781;
4.2. Structural determinations
(k) L. Canovese, F. Visentin, G. Chessa, P. Uguagliati, C. Santo, A. Dolmella,
Organometallics 24 (2005) 3297;
(l) L. Canovese, F. Visentin, G. Chessa, P. Uguatliati, C. Levi, A. Dolmella,
Organometallics 24 (2005) 5537;
(m) L. Canovese, F. Visentin, C. Santo, C. Levi, A. Dolmella, Organometallics 26
(2007) 5590;
(n) L. Canovese, F. Visentin, C. Levi, C. Santo, J. Organomet. Chem. 693 (2008)
3324;
Crystals of complexes were grown by vapor diffusion of Et2O
into MeNO2 (3, 7, and 8), or hot MeNO2 (1, 2, 4, 5 and 6). Diffraction
data was collected by the authors at the School of Chemistry (3, 6, 7
and 8) and the Australian Synchrotron using the MX1 beamline (1,
2, 4, and 5).
Data for 3, 6, 7 and 8 were collected at ꢀ80 °C (25 °C for 8) with
(o) L. Canovese, F. Visentin, C. Santo, A. Dolmella, J. Organomet. Chem. 694
(2009) 411;
an Enraf Nonius Turbo CAD4 with Mo Ka radiation (0.71073 Å) on
crystals mounted on glass fibers. Data for 1, 2, 4, and 5 were col-
lected at ꢀ173 °C for crystals mounted on Hampton Scientific cry-
oloops at the MX1 beamline of the Australian Synchrotron using
Blue Ice software [6] and data reduced using XDS. The structures
were solved by direct methods with SHELXS-97, refined using full-
matrix least-squares routines against F2 with SHELXL-97 [7], and
visualized using X-SEED [8]. All non-hydrogen atoms were refined
anisotropically. All hydrogen atoms were placed in calculated posi-
tions and refined using a riding model with fixed C–H distances of
0.95 (sp2CH), 0.99 (CH2), 0.98 Å (CH3). The thermal parameters of
all hydrogen atoms were estimated as Uiso(H) = 1.2Ueq(C), except
for CH3 where Uiso(H) = 1.5Ueq(C). Crystallographic data are listed
in Table 4.
(p) L. Canovese, F. Visentin, G. Chessa, C. Santo, A. Dolmella, Dalton Trans. (2009)
9475;
(q) L. Canovese, F. Visentin, Inorg. Chim. Acta 363 (2010) 2375.
[4] (a) G. Chelucci, D. Berta, A. Saba, Tetrahedron 53 (1997) 3843;
(b) G. Chelucci, D. Berta, D. Fabbri, G.A. Pinna, A. Saba, F. Ulgheri, Tetrahedron:
Asymmetry 9 (1998) 1933;
(c) L. Canovese, F. Visentin, G. Chessa, C. Santo, C. Levi, P. Uguagliati, Inorg.
Chem. Commun. 9 (2006) 388;
(d) L. Canovese, F. Visentin, G. Chessa, P. Uguagliati, C. Santo, L. Maini, J.
Organomet. Chem. 692 (2007) 2342;
(e) L. Canovese, F. Visentin, C. Santo, J. Organomet. Chem. 692 (2007) 4187.
[5] (a) R.C. Jones, R.L. Madden, B.W. Skelton, V.-A. Tolhurst, A.H. White, A.M.
Williams, A.J. Wilson, B.F. Yates, Eur. J. Inorg. Chem. (2005) 1048;
(b) R.C. Jones, A.J. Canty, J.A. Deverell, M.G. Gardiner, R.M. Guijt, J.A. Smith, T.
Rodemann, V.-A. Tolhurst, Tetrahedron 65 (2009) 7474;
(c) R.C. Jones, A.J. Canty, M.G. Gardiner, B.W. Skelton, V.-A. Tolhurst, Inorg. Chim.
Acta 363 (2010) 77;
(d) R.C. Jones, A.J. Canty, T. Caradoc-Davies, N.W. Davies, M.G. Gardiner, P.J.
Marriott, C.P. Rühle, V.-A. Tolhurst, Dalton Trans. (2010) 3799;
(e) C.P.G. Rühle, J. Niere, P.D. Morrison, R.C. Jones, T. Caradoc-Davies, A.J. Canty,
M.G. Gardiner, V.-A. Tolhurst, P.J. Marriott, Anal. Chem. 82 (2010) 4501.
[6] T.M. McPhillips, S.E. McPhillips, H.J. Chiu, A.E. Cohen, A.M. Deacon, P.J. Ellis, E.
Garman, A. Gonzalez, N.K. Sauter, R.P. Phizackerley, S.M. Soltis, P. Kuhn, J.
Synchrotron Radiat. 9 (2002) 401.
[7] G.M. Sheldrick, SHELX97, Programs for Crystal Structure Analysis, Universität
Göttingen, Germany, 1998.
[8] L.J. Barbour, J. Supramol. Chem. 1 (2001) 189.
Acknowledgments
We thank the Australian Research Council for financial support,
Assoc. Prof. Noel Davies and Dr. Thomas Rodemann of the Central
Science Laboratory for mass spectrometry and elemental analysis
of complexes. Aspects of this research were undertaken on the
MX1 beamline at the Australian Synchrotron, Victoria, Australia.