6 For enantioselective carbonyl allylation via iridium catalyzed C–C
bond forming transfer hydrogenation, see: (a) I. S. Kim, M.-Y. Ngai
and M. J. Krische, J. Am. Chem. Soc., 2008, 130, 6340; (b) I. S. Kim,
M.-Y. Ngai and M. J. Krische, J. Am. Chem. Soc., 2008, 130, 14891;
(c) I. S. Kim, S. B. Han and M. J. Krische, J. Am. Chem. Soc., 2009,
131, 2514; (d) S. B. Han, I. S. Kim, H. Han and M. J. Krische,
J. Am. Chem. Soc., 2009, 131, 6916; (e) Y. Lu, I. S. Kim, A. Hassan,
D. J. Del Valle and M. J. Krische, Angew. Chem., Int. Ed., 2009,
48, 5018; (f) S. B. Han, H. Han and M. J. Krische, J. Am. Chem.
Soc., 2010, 132, 1760; (g) Y. J. Zhang, J. H. Yang, S. H. Kim and
M. J. Krische, J. Am. Chem. Soc., 2010, 132, 4562; (h) S. B. Han,
X. Gao and M. J. Krische, J. Am. Chem. Soc., 2010, 132, 9153;
(i) A. Hassan, J. R. Zbieg and M. J. Krische, Angew. Chem., Int. Ed.,
2011, 50, 3493; (j) X. Gao, I. A. Townsend and M. J. Krische,
J. Org. Chem., 2011, 76, 2350; (k) X. Gao, Y. J. Zhang and
M. J. Krische, Angew. Chem., Int. Ed., 2011, 50, 4173.
Scheme 3 Double methallylation of propanediol to form the
C2-symmetric adduct 8.
7 (a) R. Cramer, J. Am. Chem. Soc., 1967, 89, 4621; (b) A. C. Jesse,
E. H. P. Cordfunke and W. Ouweltjes, Thermochim. Acta, 1979,
30, 293.
8 (a) M. J. S. Dewar, Bull. Soc. Chim. Fr., 1951, C71; (b) J. Chatt and
L. A. Duncanson, J. Chem. Soc., 1953, 2939; (c) M. J. S. Dewar
and G. P. Ford, J. Am. Chem. Soc., 1979, 101, 783.
9 (a) S. S. Stahl, J. L. Thorman, N. de Silva, I. A. Guzei and
R. W. Clark, J. Am. Chem. Soc., 2003, 125, 12; (b) B. V. Popp,
J. L. Thorman, C. M. Morales, C. R. Landis and S. S. Stahl, J. Am.
Chem. Soc., 2004, 126, 14832.
10 For isolated examples of enantioselective carbonyl methallylation
employing chirally modified methallylmetal reagents (withstanding
ref. 10h), see: (a) Boron: R. W. Hoffmann and T. Herold, Chem.
Ber., 1981, 114, 375; (b) P. K. Jadhav, K. S. Bhat, T. Perumal and
H. C. Brown, J. Org. Chem., 1986, 51, 432; (c) R. P. Short and
S. Masamune, J. Am. Chem. Soc., 1989, 111, 1892; (d) E. J. Corey,
C.-M. Yu and S. S. Kim, J. Am. Chem. Soc., 1989, 111, 5495;
(e) H. Lachance, X. Lu, M. Gravel and D. G. Hall, J. Am. Chem.
Soc., 2003, 125, 10160; (f) M. Gravel, H. Lachance, X. Lu and
D. G. Hall, Synthesis, 2004, 1290; (g) W. Chen, Y. Liu and
Through the use of methallyl chloride, which incorporates a
more reactive leaving group, ionization to form the p-allyliridium
complex becomes more rapid, compensating for the shorter
lifetime of the more highly substituted olefin p-complex. Based
on this insight into the requirements of the catalytic process,
highly enantioselective Grignard-Nozaki–Hiyama methallylation
is achieved from the alcohol or aldehyde oxidation levels in the
absence of stoichiometric metallic reagents or reductants.
Future studies will focus on the development of related
alcohol–alkyl halide C–C couplings.
Acknowledgment is made to the Robert A. Welch Foundation
(F-0038) and the NIH-NIGMS (RO1-GM069445) for partial
support of this research. The Higher Education Commission of
Pakistan is acknowledged for graduate student fellowship
support (AH).
Z. Chen, Eur. J. Org. Chem., 2005, 1665; (h) J. G. Roman and
´
J. A. Soderquist, J. Org. Chem., 2007, 72, 9772; (i) Titanium:
R. O. Duthaler, A. Hafner, P. L. Alsters, P. Rothe-Streit and
G. Rihs, Pure Appl. Chem., 1992, 64, 1897.
Notes and references
´
1 V. Grignard, C. R. Hebd. Seances Acad. Sci., 1900, 130, 1322.
2 A. Furstner and N. Shi, J. Am. Chem. Soc., 1996, 118, 2533.
3 For selected reviews on catalytic Nozaki–Hiyama coupling, see:
(a) G. C. Hargaden and P. J. Guiry, Adv. Synth. Catal., 2007,
349, 2407; (b) M. Inoue, T. Suzuki, A. Kinoshita and M. Nakada,
Chem. Rec., 2008, 8, 169.
11 For isolated examples of enantioselective methallyl employing
chirally modified Lewis acid or Lewis base catalysts (withstanding
ref. 11g), see: (a) Boron: V. Rauniyar, H. Zhai and D. G. Hall,
J. Am. Chem. Soc., 2008, 130, 8481; (b) V. Rauniyar and D. G. Hall,
J. Org. Chem., 2009, 74, 4236; (c) Tin: G. E. Keck,
D. Krishnamurthy and M. C. Grier, J. Org. Chem., 1993,
¨
4 For selected examples of enantioselective carbonyl allylation and
crotylation via catalytic Nozaki–Hiyama coupling, see:
(a) M. Bandini, P. G. Cozzi and A. Umani-Ronchi, Polyhedron,
2000, 19, 537; (b) M. Bandini, P. G. Cozzi and A. Umani-Ronchi,
Tetrahedron, 2001, 57, 835; (c) M. Bandini, P. G. Cozzi and
A. Umani-Ronchi, Angew. Chem., Int. Ed., 2000, 39, 2327;
(d) M. Inoue, T. Suzuki and M. Nakada, J. Am. Chem. Soc.,
2003, 125, 1140; (e) J.-Y. Lee, J. J. Miller, S. S. Hamilton and
M. S. Sigman, Org. Lett., 2005, 7, 1837; (f) H. A. McManus,
P. G. Cozzi and P. J. Guiry, Adv. Synth. Catal., 2006, 348, 551;
(g) G. Xia and H. Yamamoto, J. Am. Chem. Soc., 2006, 128, 2554;
58, 6543; (d) S. Weigand and R. Bruckner, Chem.–Eur. J., 1996,
¨
2, 1077; (e) A. Yanigasawa, A. Ishiba, H. Nakashima and
H. Yamamoto, Synlett, 1997, 88; (f) S. Konishi, H. Hanawa and
K. Maruoka, Tetrahedron: Asymmetry, 2003, 15, 1603; (g) J. G. Kim,
E. H. Camp and P. J. Walsh, Org. Lett., 2006, 8, 4413; (h) Silicon:
K. Furuta, M. Mouri and H. Yamamoto, Synlett, 1991, 561;
(i) M. Nakajima, M. Saito, M. Shiro and S. Hashimoto, J. Am.
Chem. Soc., 1998, 120, 6419; (j) M. Nakajima, S. Kotani, T. Ishizuka
and S. Hashimoto, Tetrahedron Lett., 2005, 46, 157; (k) S. Kotani,
S. Hashimoto and M. Nakajima, Tetrahedron, 2007, 63, 3122.
12 For isolated examples of enantioselective Nozaki–Hiyama methal-
lylation (withstanding ref. 12a), see: (a) M. Inoue, T. Suzuki and
M. Nakada, J. Am. Chem. Soc., 2003, 125, 1140; (b) G. Hargaden,
H. A. McManus, P. G. Cozzi and P. J. Guiry, Org. Biomol. Chem.,
2007, 5, 763.
13 Under the conditions of ruthenium catalysis, alcohols and allylic
acetates couple to form enones, see: T. Kondo, T. Mukai and
Y. Watanabe, J. Org. Chem., 1991, 56, 487.
14 For double enantioselective allylation of 1,3-propanediol, see:
Y. Lu and M. J. Krische, Org. Lett., 2009, 11, 3108 and ref. 6e.
15 This mechanism for enantiomeric enrichment has been documented
previously: (a) T. Kogure and E. L. Eliel, J. Org. Chem., 1984,
49, 576; (b) M. M. Midland and J. Gabriel, J. Org. Chem., 1985,
50, 1144.
(h) G. C. Hargaden, H. Muller-Bunz and P. J. Guiry, Eur. J. Org.
¨
Chem., 2007, 4235; (i) G. C. Hargaden, T. P. O’Sullivan and
P. J. Guiry, Org. Biomol. Chem., 2008, 6, 562; (j) X. Liu,
J. A. Henderson, T. Sasaki and Y. Kishi, J. Am. Chem. Soc.,
2009, 131, 16678; (k) J. D. White and S. Shaw, Org. Lett., 2011,
13, 2488.
5 For selected reviews on C–C bond forming hydrogenation and
transfer hydrogenation, see: (a) R. L. Patman, J. F. Bower,
I. S. Kim and M. J. Krische, Aldrichimica Acta, 2008, 41, 95;
(b) J. F. Bower, I. S. Kim, R. L. Patman and M. J. Krische, Angew.
Chem., Int. Ed., 2009, 48, 34; (c) S. B. Han, I. S. Kim and
M. J. Krische, Chem. Commun., 2009, 7278; (d) J. F. Bower and
M. J. Krische, Top. Organomet. Chem., 2011, 43, 107.
c
10030 Chem. Commun., 2011, 47, 10028–10030
This journal is The Royal Society of Chemistry 2011