Job/Unit: O43658
/KAP1
Date: 11-03-15 18:18:05
Pages: 9
Bulky Monodentate Biphenylarsine Ligands in the Heck Reaction
[12]
[13]
a) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth.
Catal. 2006, 348, 609–679; b) J. P. Knowles, A. Whiting, Org.
Biomol. Chem. 2007, 5, 31–44; c) B. Karimi, H. Behzadnia, D.
Elhamifar, P. F. Akhavan, F. K. Esfahani, A. Zamani, Synthesis
2010, 1399–1427; d) A. Balanta, C. Godard, C. Claver, Chem.
Soc. Rev. 2011, 40, 4973–4985.
For applications of the Heck reaction, see: a) K. C. Nicolaou,
P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442–
4489; Angew. Chem. 2005, 117, 4516; b) C. Torborg, M. Beller,
Adv. Synth. Catal. 2009, 351, 3027–3043; c) M. M. Heravi, A.
Fazeli, Heterocycles 2010, 81, 1979–2026; d) V. Farina, Adv.
Synth. Catal. 2004, 346, 1553–1582; e) H.-U. Blaser, A. Indo-
lese, F. Naud, U. Nettekoven, A. Schnyder, Adv. Synth. Catal.
2004, 346, 1583–1598.
CDCl3): δ = 7.41, (td, J = 7.4, 1.2 Hz, 1 H), 7.29–7.17 (m, 13 H),
7.14 (ddd, J = 7.7, 3.8, 0.8 Hz, 1 H), 6.52 (d, J = 8.4 Hz, 2 H), 3.44
(s, 6 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 158.19 (s), 141.79
(d, J = 13.02 Hz), 138.58 (d, J = 13.02 Hz), 138.15 (d, J = 9.8 Hz),
134.44 (d, J = 1.72 Hz), 134.28 (d, J = 19.8 Hz), 131.25 (d, J =
6.06 Hz), 129.47 (s), 129.13 (s), 128.35 (d, J = 6.46 Hz), 128.28 (d,
J = 6.97 Hz), 127.59 (s), 119.52 (d, J = 6.63 Hz), 103.92 (s), 55.70
(s) ppm. 31P NMR (121 MHz, CDCl3): δ = –12.55 ppm.
Acknowledgments
[14]
[15]
M. Oestreich (Ed.), in: The Mizoroki–Heck Reaction, Wiley,
Chichester, UK, 2009.
The authors acknowledge financial research support from the Con-
sejo Nacional de Investigaciones Científicas y Técnicas (CON-
ICET), the Fondo para la Investigación Científica y Tecnológica
(FONCYT) and the Secretaría de Ciencia y Técnica, Universidad
Nacional de Córdoba (SECYT-UNC). G. J. Q. gratefully acknowl-
edges CONICET for fellowships.
a) Y. Ben-David, M. Portnoy, M. Gozin, D. Milstein, Organo-
metallics 1992, 11, 1995–1996; b) M. Portnoy, Y. Ben-David, I.
Rousso, D. Milstein, Organometallics 1994, 13, 3465–3479; c)
A. F. Littke, G. C. Fu, J. Org. Chem. 1999, 64, 10–11; d) K. H.
Shaughnessy, P. Kim, J. F. Hartwig, J. Am. Chem. Soc. 1999,
121, 2123–2132; e) D. Morales-Morales, R. Redón, C. Yung,
C. M. Jensen, Chem. Commun. 2000, 1619–1620; f) A. Ehren-
traut, A. Zapf, M. Beller, Synlett 2000, 1589–1592; g) A. F.
Littke, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 6989–7000; h)
N. J. Whitcombe, K. K. Hii, S. E. Gibson, Tetrahedron 2001,
57, 7449–7476; i) A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed.
2002, 41, 4176–4211; Angew. Chem. 2002, 114, 4350; j) E. Jung,
K. Park, J. Kim, H.-T. Jung, I.-K. Oh, S. Lee, Inorg. Chem.
Commun. 2010, 13, 1329–1331.
a) W. A. Herrmann, C. Brossmer, K. Ofele, C.-P. Reisinger, T.
Priermeier, M. Beller, H. Fisher, Angew. Chem. Int. Ed. Engl.
1995, 34, 1844–1848; Angew. Chem. 1995, 107, 1989; b) A. S.
Gruber, D. Z. Zim, G. Ebeling, A. L. Monteriro, J. Dupont,
Org. Lett. 2000, 2, 1287–1290; c) S. Gibson, D. F. Foster, G. R.
Eastam, R. P. Tooze, D. J. Cole-Hamilton, Chem. Commun.
2001, 779–780; d) C. S. Consorti, M. L. Zanini, S. Leal, G.
Ebeling, J. Dupont, Org. Lett. 2003, 5, 983–986; e) G. D. Frey,
C.-P. Reisinger, E. Herdtweck, W. A. Herrmann, J. Organomet.
Chem. 2005, 690, 3193–3201; f) K.-F. Peng, M.-T. Chen, C.-A.
Huang, C.-T. Chen, Eur. J. Inorg. Chem. 2008, 2463–2470.
a) D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem.
Rev. 2000, 100, 39–92; b) S. K. Yen, L. L. Koh, F. E. Hahn,
H. V. Huynh, T. S. A. Hor, Organometallics 2006, 25, 5105–
5112; c) J. Ye, W. Chen, D. Wang, Dalton Trans. 2008, 4015–
4022; d) N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41,
1440–1449; e) X. Zhang, Z. Xi, A. Liu, W. Chen, Organometal-
lics 2008, 27, 4401–4406; f) D. Meyer, M. A. Taige, A. Zeller,
K. Hohlfeld, S. Ahrens, T. Strassner, Organometallics 2009, 28,
2142–2149.
a) W. A. Herrmann, K. Ofele, S. K. Schneider, E. Herdtweck,
S. D. Hoffmann, Angew. Chem. Int. Ed. 2006, 45, 3859–3862;
Angew. Chem. 2006, 118, 3943; b) D. F. Wass, M. F. Haddow,
T. W. Hey, A. Guy Orpen, C. A. Russell, R. L. Wingad, M.
Green, Chem. Commun. 2007, 2704–2706; c) Q. Yao, M. Zab-
awa, J. Woo, C. Zheng, J. Am. Chem. Soc. 2007, 129, 3088–
3089.
a) S. Nadri, M. Joshaghani, E. Rafiee, Appl. Catal. A 2009,
362, 163–168; b) S. Nadri, M. Joshaghani, E. Rafiee, Tetrahe-
dron Lett. 2009, 50, 5470–5473; c) H.-J. Xu, Y.-Q. Zhao, X.-F.
Zhou, J. Org. Chem. 2011, 76, 8036–8041.
D. L. Dodds, M. D. K. Boele, G. P. F. van Strijdonck, J. G.
de Vries, P. W. N. M. van Leeuwen, P. C. J. Kamer, Eur. J. Inorg.
Chem. 2012, 1660–1671.
a) D. Naskar, S. K. Das, L. Giribabu, B. G. Maiya, S. Roy,
Organometallics 2000, 19, 1464–1469; b) M. Cai, Y. Huang, H.
Zhao, C. Song, J. Organomet. Chem. 2003, 682, 20–25; c) M.
Cai, Y. Huang, H. Zhao, C. Song, React. Funct. Polym. 2004,
59, 81–86; d) M. Cai, H. Zhao, W.-Y. Hu, Chin. J. Chem. 2005,
23, 443–447.
[1] a) D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47,
6338–6361; Angew. Chem. 2008, 120, 6438; b) R. Martin, S. L.
Buchwald, Acc. Chem. Res. 2008, 41, 1461–1473.
[2] a) M. Berthod, G. Mignani, D. Woodward, M. Lemaire, Chem.
Rev. 2005, 105, 1801–1836; b) H. Shimizu, I. Nagasaki, T.
Saito, Tetrahedron 2005, 61, 5405–5432.
[3] a) D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc.
1998, 120, 9722–9723; b) J. P. Wolfe, R. A. Singer, B. H. Yang,
S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 9550–9561; c)
J. P. Wolfe, H. Tomori, J. P. Sadighi, J. J. Yin, S. L. Buchwald,
J. Org. Chem. 2000, 65, 1158–1174.
[4] a) S. Kaye, J. M. Fox, F. A. Hicks, S. L. Buchwald, Adv. Synth.
Catal. 2001, 343, 789–794; b) T. E. Barder, S. D. Walker, J. R.
Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685–
4696; c) K. L. Billingsley, K. W. Anderson, S. L. Buchwald, An-
gew. Chem. Int. Ed. 2006, 45, 3484–3488; Angew. Chem. 2006,
118, 3564.
[5] a) E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am.
Chem. Soc. 2003, 125, 13978–13980; b) T. E. Barder, S. L.
Buchwald, J. Am. Chem. Soc. 2007, 129, 12003–12010; c) X.
Wu, B. P. Fors, S. L. Buchwald, Angew. Chem. Int. Ed. 2011,
50, 9943–9947; d) L. Salvi, N. R. Davis, S. Z. Ali, S. L. Buch-
wald, Org. Lett. 2012, 14, 170–173.
[6] a) C. M. So, C. P. Lau, F. Y. Kwong, Angew. Chem. Int. Ed.
2008, 47, 8059–8063; Angew. Chem. 2008, 120, 8179; b) G. J.
Withbroe, R. A. Singer, J. E. Sieser, Org. Process Res. Dev.
2008, 12, 480–489.
[7] a) M. Bonaterra, S. E. Martín, R. A. Rossi, Org. Lett. 2003, 5,
2731–2734; b) P. M. Uberman, M. N. Lanteri, S. E. Martín,
Organometallics 2009, 28, 6927–6934.
[8] a) M. N. Lanteri, R. A. Rossi, S. E. Martín, J. Organomet.
Chem. 2009, 694, 3425–3430; b) M. Bonaterra, R. A. Rossi,
S. E. Martín, Organometallics 2009, 28, 933–936.
[9] P. M. Uberman, M. N. Lanteri, S. C. Parajón Puenzo, S. E.
Martín, Dalton Trans. 2011, 40, 9229–9237.
[10] F. Stiemke, M. Gjikaj, D. E. Kaufmann, J. Organomet. Chem.
2009, 694, 5–13.
[11] For a general overview of the Heck reaction, see: a) I. P. Belets-
kaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009–3066; b)
S. E. Gibson, N. J. Whitcombe, K. Kuok, Tetrahedron 2001, 57,
7449–7476; c) M. Shibasaki, E. M. Vogl, T. Ohshima, Adv.
Synth. Catal. 2004, 346, 1533–1552; d) F. Alonso, I. P. Belets-
kaya, M. Yus, Tetrahedron 2005, 61, 11771–11835; e) J. L. Bras,
J. Muzart, Chem. Rev. 2011, 111, 1170–1214; f) D. M. Cartney,
P. J. Guiry, Chem. Soc. Rev. 2011, 40, 5122–5150; g) C. C. C. J.
Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew.
Chem. Int. Ed. 2012, 51, 5062–5085.
[16]
[17]
[18]
[19]
[20]
[21]
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7