Boc Protection of Amines and Amine Derivatives
COMMUNICATIONS
d¼1.35 (bs, 1H, NH), 1.47 (bs, 1H, OH), 1.5 (s, 9H), 3.8 (d,
2H), 4.7 (t, 1H), 7.2–7.6 (m, 5H); 13C NMR (22.5 MHz,
CDCl3): d¼27.9 (CH3), 56.8 (C), 66.6 (CH), 79.9 (CH2),
126.7 (CH), 127.8 (CH), 128.8 (CH), 139.8 (C), 156.5 (CO).
3i: IR (neat): n¼3430, 3060, 2945, 2925, 1798, 1741, 1660,
1H NMR (90 MHz, CDCl3): d¼1.3 (d, 3H), 1.7 (s, 9H), 2.6 (s,
3H), 3.2 (bs, 1H), 4.1 (q, 1H), 4.7 (d, 1H, CH), 7.1–7.5 (m,
5H); 13C NMR (22.5 MHz): d¼12.7 (CH3), 27.1 (CH3), 28.0
(CH3), 30.8 (CH), 57.4 (CH), 79.6 (C), 126.5 (CH), 127.6
(CH), 128.2 (CH), 142.5 (C), 156.5 (CO).
Moreover, this protocol appears to be competitive and
in some cases superior to previously reported proce-
dures that work under basic conditions. For example,
in the case of N-Boc-4-nitroaniline (3e, Table 1) we ob-
tained a good yield in 5 hours at room temperature,
while other procedure failed or required long times or
very harsh reaction condition (14 h, 50%).[7b]
1469, 1437, 1398, 1368, 1331, 1249, 1148, 1044, 754, 693 cmꢀ1
;
Experimental Section
5a: IR (neat): n¼3305, 2970, 1700, 1451, 1398, 1366, 1277,
1
1247 cmꢀ1; H NMR (90 MHz, CDCl3): d¼0.13 (s, 9H), 1.5
General Procedure for Preparation of N-Boc-Amines
and Amine Derivatives
(s, 9H), 7.1 (bs, 1H); 13C NMR (22.5 MHz, CDCl3): d¼3.25
(CH3), 29.6 (CH3), 83.4 (C), 160 (CO).
5b: IR (neat): n¼3245, 2970, 2850,1706, 1505, 1441, 1364,
1242, 1180, 1094 cmꢀ1; 1H NMR (90 MHz, CDCl3): d¼1.5 (s,
9H), 2.7 (s, 6H), 5.5 (bs, 1H); 13C-NMR (22.5 MHz, CDCl3):
d¼28.0 (CH3), 47.5 (CH3), 80.2 (C), 154.7 (CO).
To a mixture of Boc2O (437 mg, 2 mmol) and LiClO4 (43 mg,
20 mol %) in 4 mL of CH2Cl2 was added 2 mmol of amine or
amine derivative. After stirring for 5 h at room temperature,
the resulting suspension was filtered and the filtrate concen-
trated on a rotary evaporatur to afford the crude product.
The product was purified by flash chromatography (hexane-
5c: IR (neat): n¼3360, 3340, 3125, 2990, 2980, 1799, 1755,
1
1452, 1371, 1302, 1208, 1151, 1116, 1066, 767, 661 cmꢀ1; H
NMR (90 MHz, CDCl3): d¼1.5 (s, 9H), 2.2 (s, 3H), 5.2 (bs,
1H), 7.3 (d, 2H), 7.8 (d, 2H); 13C NMR (22.5 MHz, CDCl3):
d¼21.5 (CH3), 27.4 (CH3), 85.1 (C), 126.4 (CH), 129.4 (CH),
139.2 (C), 143.5 (C), 146.7 (CO).
1
ethyl acetate). H-NMR, 13C-NMR, IR spectra were entirely
consistent with the assigned structures. Spectroscopic data
for selected examples are given below.
3a: IR (neat): n¼3420, 2950, 1799, 1762, 1680, 1451,
1
13671207, 1113, 1066 cmꢀ1; H NMR (90 MHz, CDCl3): d¼
1.6 (s, 9H), 2.2 (s, 9H), 3.5 (bs, 1H); 13C NMR (22.5 MHz):
d¼27.4 (CH3), 29.9 (CH3), 50.1 (C), 85.1 (C), 147.1 (CO).
3b: IR (neat): n¼2920, 1685, 1445, 1403, 1230, 1161, 1112,
872 cmꢀ1; 1H NMR (90 MHz, CDCl3): d¼1.5 (s, 9H), 4.5 (bs,
4H), 7.7–7.3 (m, 10H); 13C NMR (22.5 MHz): d¼28.1 (CH3),
48.9 (C), 80 (CH2), 127.4 (CH), 127.9 (CH), 128.7 (CH),
138.2 (C), 156.3 (CO).
Acknowledgements
We would like to express our sincere thanks to Professor Mo-
hamed Yalpani for his helpful discussion. Research supported
by the National Research Council ofI. R. Iran as a National Re-
search project under the number 984.
3c: IR (neat): n¼2995, 1683, 1448, 1413, 1360, 1277, 1246,
1166, 1123, 1083, 860 cmꢀ1; H NMR (90 MHz, CDCl3): d¼
1
1.5 (s, 9H), 3.37 (t, 4H), 3.52 (t, 4H); 13C NMR (22.5 MHz,
CDCl3): d¼28.1 (CH3), 43.7 (C), 66.6 (CH2), 79.9 (CH2), 155
(CO).
References and Notes
[1] a) P. J. Kociensky, in: Protecting Groups; Georg Thieme
Verlag, Stuttgart, New York, 2000; b) T. W. Greene,
P. G. M. Wuts, in: Protective Group in Organic Synthesis,
3rd edn., John Wiley and Son, New York, 1999; c) J. Pod-
lech, in: Houben-Weyl, Methods ofOrganic Chemistry ,
4th edn., Vol. E22, (Eds.: M. Goodman, A. Felix, L. Mo-
roder, C. Toniolo), Georg Thieme Verlag, Stuttgart,
2001, pp. 86–100.
[2] a) E. Wuensch, in: Houben-Weyl, Methods ofOrganic
Chemistry, 4th edn., Vol. 15/1, (Eds.: E. Müller, O. Bayer,
H. Meerwein, K. Ziegler), Georg Thieme Verlag, Stutt-
gart, 1974, p. 46; b) X. Yi. Xiuo, K. Ngu, C. Choa, D. V.
Patel, J. Org. Chem. 1997, 62, 6968.
[3] a) L. Moroder, A.Hallett, E. Wuensch, O. Keller, G.
Wersin, Hoppe Seylerꢀs Z. Physiol. Chem. 1976, 357,
1651; b) B. M. Pope, X. Yamamoto, D. S. Tarbell, Org.
Synth. Coll. Vol. VI, 1988, 418.
[4] a) S. Darnbrough, M. Mervic, S. M. Condon, C. J. Burns,
Synth. Commun. 2001, 31, 3273; b) T. A. Kelly, D. W.
McNeil, Tetrahedron Lett. 1994, 35, 9003.
3d: IR (neat): n¼3385, 3030, 1679, 1507, 1441, 1390, 1365,
1
1307, 1244, 1167, 1070, 749, 688 cmꢀ1; H NMR (500 MHz,
CDCl3 ): d¼1.42 (s, 9H), 1.41 (d, 3H), 4.8 (bs, 2H , NH and
CH), 7.22–7.34 (m, 5H); 13C NMR (122 MHz, CDCl3): d¼
22.6 (CH3), 28.1 (CH3), 50.2 (C), 79.4 (CH), 125.8 (CH), 12.7
(CH), 128.5 (CH), 144.0 (C), 155.1 (CO).
3e: IR (neat): n¼3380, 2990, 2965, 1718, 1588, 1522, 1492,
1
1461, 1365, 1305, 1281, 1220, 1106, 840 cmꢀ1; H NMR (90
MHZ, CDCl3): d¼1.5 (s, 9H), 4.5 (bs, 1H), 6.7 (d, 2H), 8.1
(d, 2H); 13C NMR (22.5 MHz, CDCl3): d¼29.1 (CH3), 51.5
(C), 113.0 (CH), 125.3 (CH), 126.3 (C), 137.6 (C), 152.7 (CO).
3f: IR (neat): n¼3445, 3350, 3300, 3120, 2975, 1677, 1622,
1587, 1513, 1484, 1444, 1365, 1294, 1248, 1159, 1049, 740 cmꢀ1
;
1H NMR (90 MHz, CDCl3); d¼1.5 (s, 9H), 3.8 (bs, 2H), 6.4
(bs, 1H), 6.7–7.4 (m, 4H); 13C NMR (22.5 MHz, CDCl3): d¼
28 (CH3), 80.4 (C), 117.8 (CH), 119.8 (CH), 124.9 (CH),
125.0 (CH), 126.0 (C), 139.7 (C), 154.2 (CO).
3g: IR (neat): n¼3125, 2975, 1747, 1464, 1379, 1315, 1291,
1241, 1150, 1089, 995, 833, 765, 644 cmꢀ1; 1H-NMR (90 MHz,
CDCl3): d¼1.5 (s, 9H), 7.2 (s, 1H), 7.37 (s, 1H), 8.1 (s, 1H);
13C NMR (22.5 MHz, CDCl3): d¼27.6 (CH3), 85.6 (C), 117.2
(CH), 130.3 (CH), 137.2 (CH), 147.4 (CO).
[5] a) Y. Basel, A. Hassner, J. Org. Chem. 2000, 65, 6368;
b) H.-J. Knoelker, T. Braxmeier, G. Schlechtingen, An-
gew. Chem. Int. Ed. Engl. 1995, 34, 2497; c) H.-J. Knoelk-
er, T. Braxmeier, G. Schlechtingen, Synlett 1996, 502.
3h: IR (neat): n¼3345, 3305, 2895, 1663, 1541, 1363, 1285,
1
1176, 1049, 1023, 753, 694 cmꢀ1; H NMR (90 MHz, CDCl3):
Adv. Synth. Catal. 2005, 347, 1929 – 1932
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
1931