R. R. A. UPUL RANAWEERA, S. RAJAM AND A. D. GUDMUNDSDOTTIR
[9] R. A. A. U. Ranaweera, Y. Zhao, S. Muthukrishnan, C. Keller, A. D.
Gudmundsdottir, Aust. J. Chem. 2010, 63, 1645–1655.
[10] J. Sankaranarayanan, L. N. Bort, S. M. Mandel, P. Chen, J. A. Krause,
E. E. Brooks, P. Tsang, A. D. Gudmundsdottir, Org. Lett. 2008, 10,
937–940.
[11] A. A. Lamola, G. S. Hammond, J. Chem. Phys. 1965, 43, 2129–2135.
[12] R. F. Borkman, D. R. Kearns, Chem. Commun. Royal Society of Chem-
istry, London, 1966, 466–467.
[13] P. F. McGarry, C. E. Doubleday, Jr., C.-H. Wu, H. A. Staab, N. J. Turro, J.
Photochem. Photobiol., A 1994, 77, 109–117.
[14] D. Cuperly, J. Petrignet, C. Crévisy, R. Grée, Chemistry – A European
Journal 2006, 12, 3261–3274.
Because 3 and 4 have similar S0 absorption, but 4 is not as an
efficient sensitizer as 3, we propose that the smaller rate con-
stant for intersystem crossing in 4 causes it to be both a singlet
and triplet sensitizer for azidoadamantane. Furthermore, the
shorter lifetime of the T1 of 2 causes it to be a less effective sen-
sitizer than 1.
We measured the rate for quenching the T1 of 3 with azidoa-
damantane (Figure 9). The decay rate constant of T1 of 3, in-
creased with increasing concentration of azidoadamantane. A
plot of the decay rate constants for T1 of 3 versus the azidoada-
mantane concentration was fitted with a straight line, with a
slope of 1.6 Â 108 M–1 s–1. The rate for azidoadamantane quench-
ing the T1 of 3, is similar as to what is been reported as the rate of
azidoadamantane quenching the T1 of acetophenone.[7]
[15] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
[16] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter 1988, 37,
785–789.
[17] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.
E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montogomery,
Jr., J. E. Peralta, F. Ogliaro, M.. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,
A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D.
J. Fox, I. Gaussian, Gaussian Inc., Wallingford CT, 2009.
[18] N. P. Gritsan, M. S. Platz, W. T. Borden, Mol. Supramol. Photochem.
2005, 13, 235–356.
CONCLUSION
We used phosphorescence and laser flash photolysis to charac-
terize the T1 of 1, 2, 3 and 4. The T1 are formed with rate con-
stants on the order of ~107 s–1 and have lifetimes of several
microseconds in solution. The energies of the T1 are between
80 and 83 kcal/mol, which makes them valuable as high-energy
triplet sensitizers. However, only 3 is an efficient triplet sensitizer
for azidoadamantane, because its intersystem crossing rate con-
stant is fast enough to prevent singlet sensitization from com-
peting with the triplet sensitization. In comparison the slow
intersystem crossing in 4, results in both singlet and triplet sen-
sitization of azidoadamantane. Alcohols 1 and 2 are not as effi-
cient sensitizers as 3, because their ground state absorption
does not differ sufficiently from azidoadamantane in addition
to slow intersystem crossing rate constants.
[19] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093.
[20] C. J. Cramer, D. G. Truhlar, Chem. Rev.. (Washington, D. C.) 1999, 99,
2161–2200.
[21] E. Cances, B. Mennucci, J. Chem. Phys. 2001, 114, 4744–4745.
[22] B. Mennucci, E. Cances, J. Tomasi, J. Phys. Chem. B 1997, 101,
10506–10517.
[23] R. G. Parr, Y. Weitao, Density Functional Theory in Atoms and
Molecules, Oxford University Press, Oxford, 1989.
[24] J. K. Labanowksi, J. W. Andzelm, Density Functional Methods in
Chemistry. Springer-Verlag, New York, 1991.
Acknowledgements
[25] J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, J. Phys.
Chem. 1992, 96, 135–149.
[26] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454–464.
[27] R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109,
8218–8224.
[28] S. Muthukrishnan, J. Sankaranarayanan, R. F. Klima, T. C. S. Pace, C.
Bohne, A. D. Gudmundsdottir, Org. Lett. 2009, 11, 2345–2348.
[29] G. S. Wayne, G. J. Snyder, D. W. Rogers, J. Am. Chem. Soc. 1993, 115,
9860–9861.
[30] I. R. Dunkin, C. J. Shields, H. Quast, B. Seiferling, Tetrahedron Lett.
1983, 24, 3887–3890.
We thank the National Science Foundation (CHE-0703920) and
the Ohio Supercomputer Center for supporting this work. R. A.
U. R. is grateful to the University of Cincinnati Research Council
for its support and the UC Chemistry Department for a Harry
Mark Fellowship.
We wish Professor Robert Moss a happy 70th Birthday. We
would also like to congratulate him on his excellent contribution
to the field of reactive intermediates over the years. We wish him
continuing success in exploring both reactive intermediates and
exotic islands.
[31] E. A. Braude, Vol. Chapter 4, Academic Press, New York 1955, pp. 131.
[32] J. G. Radziszewski, J. W. Downing, M. Jawdosiuk, P. Kovacic, J. Michl,
J. Am. Chem. Soc. 1985, 107, 594–603.
[33] A. Gandini, P. H. Plesch, J. Chem. Soc. 1965, 6019–6024.
[34] E. A. Braude, F. C. Nachod, Ultraviolet and Visible light Absorption in
Determination of Organic Structures by Physical Methods, Academic
Press, New York, 1955, Vol. 1, Chapter 4, 131–194.
[35] R. B. Cundall, D. A. Robinson, L. C. Pereira, Adv. Photochem. 1977, 10,
147–219.
REFERENCES
[1] R. A. Abramovitch E. P. Kyba, in The Chemistry of the Azido Group
(Ed.: S. Patai), John Wiley & Sons, London, 1971, pp. 221–329.
[2] M. S. Platz, in Reactive Intermediate Chemistry (Eds. R. A. Moss, M. S.
Platz, M. Jones, Jr. Editors), N. J. Hoboken, 2004, pp. 501–559.
[3] E. P. Kyba, R. A. Abramovitch, J. Am. Chem. Soc. 1980, 102, 735–740.
[4] R. M. Moriarty, P. Serridge, J. Am. Chem. Soc. 1971, 93, 1534–1535.
[5] P. N. D. Singh, S. M. Mandel, J. Sankaranarayanan, S. Muthukrishnan,
M. Chang, R. M. Robinson, P. M. Lahti, B. S. Ault, A. D. Gudmundsdot-
tir, J. Am. Chem. Soc. 2007, 129, 16263–16272.
[36] S. Cogan, Y. Hass, S. Zilber, J. Photochem. Photobio. A 2007, 190,
200–206.
[37] S. Muthukrishnan, S. M. Mandel, J. C. Hackett, P. N. D. Singh, C. M.
Hadad, J. A. Krause, A. D. Gudmundsdottir, J. Org. Chem. 2007, 72,
2757–2768.
[6] P. N. D. Singh, S. M. Mandel, R. M. Robinson, Z. Zhu, R. Franz, B. S.
Ault, A. D. Gudmundsdottir, J. Org. Chem. 2003, 68, 7951–7960.
[7] R. F. Klima, A. D. Gudmundsdottir, J. Photochem. Photobiol., A 2004,
162, 239–247.
[38] S. Muthukrishnan, J. Sankaranarayanan, T. C. S. Pace, A. Konosonoks,
M. E. De Michiei, M. J. Meese, C. Bohne, A. D. Gudmundsdottir, J. Org.
Chem. 2010, 75, 1393–1401.
[39] S. L. C. Murov, I. Hug, L. Gordon, Handbook of Photochemistry, 2nd
ed ed., M. Dekker, Inc., New York, 1993.
[8] S. M. Mandel, J. A. K. Bauer, A. D. Gudmundsdottir, Org. Lett. 2001, 3,
523–526.
[40] M. Fujiwara, K. Mishima, Phys. Chem. Chem. Phys. 2000, 2, 3791–3796.
wileyonlinelibrary.com/journal/poc
Copyright © 2011 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2011, 24 902–908