temperature: thus, mixing the difluoro-λ3-bromane with
2.2 equiv each of acetic acid and acetic anhydride in a
Teflon PFA vessel for 1 min under argon produced, after
removal of volatile materials liberated in vacuo, crystalline
p-trifluoromethyl(diacetoxybromo)benzene (1) in 90%
yield. Acetic anhydride probably traps hydrogen fluoride
generated in situ during the ligand exchange reaction, via
the formation of acetyl fluoride.4 Use of trimethylsilyl
acetate, instead of acetic anhydride, also afforded diace-
toxy-λ3-bromane 1 (83%). Diacetoxybromane 1 is rather
air sensitive but can be kept at room temperature under
argon in a PFA tube for more than 2 months without any
decomposition. The 1H NMR spectrum in CDCl3 showed
a set of characteristic signals assigned to the disubstituted
phenyl group [δ 8.07 (o) and 7.81 (m) ppm] (see Figure
S1(A), Supporting Information). The 13C resonance of the
ipso carbon atom appeared at δ 142.0 ppm. The polarized
hypervalent Oδꢀ Brδþ Oδꢀ bond tends to weaken the
two additional intramolecular close contacts around the
bromane(III) atom, which is reminiscent of the structure of
(diacetoxyiodo)benzene.6,7 The rms deviation of the six
atoms (Br1, C1, and O1ꢀO4) from the least-squares plane
˚
is 0.282(1) A, and the sum of the bromine centered bond
angles is Σ°Br = 365.08°. The plane of the benzene ring
makes a dihedral angle of 74.89° with this plane. The
Br1 O2 and Br1 O4 distances are considerably long-
3 3 3
3 3 3
˚
er than the computed covalent single bond length of 1.80 A
but definitively shorter than the sums of the van der Waals
8
˚
˚
radii of Br (1.85 A) and O (1.52 A). Cooperative donation
of the two lone pairs of electrons of the carbonyl oxygen
atoms to the vacant Br1ꢀC1 σ* orbital as shown in three-
center bonding model 1a, originally proposed by Alcock,6
will be responsible for these secondary Br O contacts.
3 3 3
The C1ꢀBr1ꢀO1 and C1ꢀBr1ꢀO3 bond angles are con-
siderably greater than those (81.4° and 82.6°) for PhI-
(OAc)2,6 probably because of the increased nonbonded
repulsionsbetween thesubstituentson bromane(III) with a
decreased atomic size.
3 3 3
3 3 3
CdO double bond, and hence, bromane 1 shows a lower IR
absorption by ca. 100 cmꢀ1 at 1684 cmꢀ1 compared to
acetyl hypobromite (Figure S1(C), Supporting Information).5
Aryl(sulfonylimino)-λ3-iodanes serve as excellent nitre-
noid progenitors in the aziridination of alkenes and in the
CꢀH amidation of alkanes in the presence of transition-
metal catalysts, where use of a metal catalyst (Cu, Rh, Mn,
Ru, or Ag) is crucial to the success of these nitrenoid
transfers to generate active metal-imido species.9,10 Re-
cently, we reported the synthesis of N-triflylimino-λ3-bro-
mane 2, which involves a facile ligand exchange of Frohn
reagent with triflylamide in acetonitrile.11 Triflylimino-λ3-
bromane 2 directly transfers the imino group to olefins and
heteroatom nucleophiles involving nitrogen heterocycles,
sulfur compounds, and iodoarenes at room temperature
undermetal-freeconditions.11,12 Highlyregioselectiveami-
nation of unactivated aliphatic CꢀH bonds also proceeds
smoothly by just mixing 2 with alkane without thermal
activation.13,14 These results are in marked contrast to the
reactions of sulfonylimino-λ3-iodanes, which requires
Figure 1. ORTEP drawing of diacetoxy-λ3-bromane 1 with
thermal ellipsoids at 50% probability and three-center second-
˚
ary bonding model 1a. Selected bond lengths (A) and angles
(8) Bondi, A. J. Phys. Chem. 1964, 68, 441.
(9) For reviews of aryl(sulfonylimino)-λ3-iodanes, see: (a) Collet, F.;
Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061. (b) Diaz-Requejo,
M. M.; Perez, P. J. Chem. Rev. 2008, 108, 3379. (c) Halfen, J. A. Curr.
Org. Chem. 2005, 9, 657. (d) Du Bois, J. Chemtracts: Org. Chem. 2005,
18, 1. (e) Dauban, P.; Dodd, R. H. Synlett 2003, 1571. (f) Muller, P.;
Fruit, C. Chem. Rev. 2003, 103, 2905.
(deg): Br1ꢀC1 1.914(5), Br1ꢀO1 2.009(4), Br1ꢀO3 2.064(3),
Br1 O2 2.796(2), Br1 O4 2.785(4), C1ꢀBr1ꢀO1 85.56(16),
3 3 3
3 3 3
C1ꢀBr1ꢀO3 84.85(16), O1ꢀBr1ꢀO3 170.31(14).
(10) For aziridination of olefins with sulfonylimino-λ3-iodanes, see:
(a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994,
116, 2742. (b) Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc.
1995, 117, 5889. (c) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.;
Che, C.-M. J. Am. Chem. Soc. 1999, 121, 9120. (d) Guthikonda, K.; Du
Bois, J. J. Am. Chem. Soc. 2002, 124, 13672. (e) Cui, Y.; He, C. J. Am.
Chem. Soc. 2003, 125, 16202. (f) Llaveria, J.; Beltran, A.; Diaz-Requejo,
M. M.; Matheu, M. I.; Castillon, S.; Perez, P. J. Angew. Chem., Int. Ed.
2010, 49, 7092. (g) Moriarty, R. M.; Tyagi, S. Org. Lett. 2010, 12, 364.
(11) Ochiai, M.; Kaneaki, T.; Tada, N.; Miyamoto, K.; Chuman, H.;
Shiro, M.; Hayashi, S.; Nakanishi, W. J. Am. Chem. Soc. 2007, 129,
12938.
(12) (a) Ochiai, M.; Kawano, Y.; Kaneaki, T.; Tada, N.; Miyamoto,
K. Org. Lett. 2009, 11, 281. (b) Ochiai, M.; Naito, M.; Miyamoto, K.;
Hayashi, S.; Nakanishi, W. Chem.;Eur. J. 2010, 16, 8713. (c) Ochiai,
M.; Nakano, A.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi,
W. J. Chem. Soc., Chem. Commun. 2009, 959.
Recrystallization from pentaneꢀdichloromethane at
ꢀ78 °C afforded single crystals (colorless prisms) that were
suitable for X-ray crystallography (Figure 1). Diacetoxy-
λ3-bromane 1 essentially exhibits a T-shaped geometry
with the two acetoxy groups occupying apical positions
and is regarded as pentagonal planar arrangement with
(3) (a) Frohn, H. J.; Giesen, M. J. Fluorine Chem. 1998, 89, 59.
(b) Ochiai, M.; Nishi, Y.; Goto, S.; Shiro, M.; Frohn, H. J. J. Am. Chem.
Soc. 2003, 125, 15304. (c) Ochiai, M.; Yoshimura, A.; Mori, T.; Nishi,
Y.; Hirobe, M. J. Am. Chem. Soc. 2008, 130, 3742.
(4) Olah, G. A.; Kuhn, S. J. J. Org. Chem. 1961, 26, 237.
(5) Reilly, J. J.; Duncan, D. J.; Wunz, T. P.; Patsiga, R. A. J. Org.
Chem. 1974, 39, 3291.
(13) Ochiai, M.; Miyamoto, K.; Kaneaki, T.; Hayashi, S.; Nakanishi,
(6) Alcock, N. W.; Countryman, R. M.; Esperas, S.; Sawyer, J. F.
J. Chem. Soc., Dalton Trans. 1979, 854.
(7) Ochiai, M.; Suefuji, T.; Miyamoto, K.; Shiro, M. Chem. Commun.
2003, 1438.
W. Science 2011, 332, 448.
(14) For a review of triflylimino-λ3-bromane 2, see: Ochiai, M.;
Miyamoto, K.; Hayashi, S.; Nakanishi, W. Chem. Commun. 2010, 46,
511.
Org. Lett., Vol. 13, No. 20, 2011
5429