W. Zhang et al.: Magnetic moment and atomic volume in supersaturated Fe–Cu solid solutions
11. P.J. Schilling, J.H. He, R. Tittsworth, and E. Ma, Acta Mater. 47,
IV. CONCLUSIONS
2525 (1999).
The first-principles calculations in this work using the
FP-LAPW-GGA method corroborate recent calculation
results18,19 that, different from some other transition
metal elements, Cu alloying causes enhancement of the
magnetic moment of Fe. The bcc Fe moment is enhanced
slightly, whereas the Fe moment in the fcc alloys reaches
a high-spin state at the same level as that in bcc alloys at
all compositions where fcc Fe–Cu solutions can actually
be obtained in experiments. The moment increase is
likely to be associated with the decrease in Fe band-
widths upon alloying. The magnitude of the calculated Fe
moment explains fairly well the average moments and
the nearly simple dilution behavior measured for me-
chanically alloyed fcc and bcc Fe–Cu solid solutions.
Our calculations also indicate that an increase in the Fe
atomic volume is associated with the moment increase,
especially in fcc alloys. The magnitude and composition
dependence of this volume expansion are in agreement
with the experimentally observed average atomic volume
data for both the bcc and fcc solid solutions. It is mainly
the magnetovolume effect, not the positive heat of mix-
ing of the Fe–Cu system, that is responsible for the ob-
served atomic volume and its positive deviation from the
Vegard’s Law averages of Cu and ferromagnetic bcc Fe.
12. C.L. Chien, S.H. Liou, D. Kofalt, W. Yu, T. Egami, and T. Mc-
Guire, Phys. Rev. B 33, 3247 (1986).
13. K.M. Unruh and C.L. Chien, Phys. Rev. B 30, 4968 (1984).
14. A.P. Malozemoff, A.R. Williams, and V.L. Morruzi, Phys. Rev. B
29, 1620 (1984).
15. V.L. Moruzzi, P.M. Marcus, and J. Ku¨bler, Phys. Rev. B 39, 6957
(1989).
16. M. Uhl, L.M. Sandratskii, and J. Ku¨bler, Phys. Rev. B 50, 291
(1994).
17. V.L. Moruzzi, Phys. Rev. B 41, 6939 (1990).
18. P. James, O. Ericksson, B. Johansson and I.A. Abrikosov, Phys.
Rev. B 59, 419 (1999).
19. A.F. Tatarchenko, V.S. Stepanyuk, W. Hergert, P. Rennert,
R. Zeller, and P.H. Dederichs, Phys. Rev. B 57, 5213 (1998).
20. B. Drittler, M. Weinert, R. Zeller, and P.H. Dederichs, Phys. Rev.
B 39, 930 (1989).
21. Z.W. Lu, S.H. Wei, Alex Zunger, S. Frota-Pessoa, and L.G. Fer-
reira, Phys. Rev. B 44, 512 (1990).
22. J.A. Abrikosov and B. Johansson, Phys. Rev. B 57, 14164 (1998).
23. J.S. Faulkner, N.Y. Moghadam, Y. Wang, and G.M. Stocks,
J. Phase Equil. 19, 538 (1998).
24. V. Ozolins, C. Wolverton, and A. Zunger, Phys. Rev. B 57, 6427
(1998).
25. R.E. Watson and M. Weinert, Phys. Rev. B 58, 5981 (1998).
26. A.J. Freeman, in Alloy Phase Stability, edited by G.M. Stocks and
A. Gonis (Kluwer Academic Publisher, Dordrecht, The Nether-
lands, 1989) p. 365.
27. R. Wu, A.J. Freeman, and G.B. Olson, Science 265, 376 (1994).
28. P. Blaha, K. Schwarz, P. Dufek, and R. Augustyn, WIEN95,
Technical University of Vienna, Vienna, Austria (1995); P. Blaha,
K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Com-
mun. 59, 399 (1990).
ACKNOWLEDGMENTS
29. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R.
Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).
30. D.J. Singh, W.E. Pickett, and H. Krakauer, Phys. Rev. B 43,
11628 (1991).
The authors thank Dr. C-L. Chien, Dr. H. Jansen, and
Dr. G. Prinz for useful discussions. EM’s work at JHU is
supported in part by the National Science Foundation,
Grant No. DMR-9896379.
31. J. Zhu, X.W. Wang, and S.G. Louie, Phys. Rev. B 45, 8887
(1992).
32. J.H. Cho and M. Scheffler, Phys. Rev. B 53, 10685 (1996).
33. M. Ekman, B. Sadigh, K. Einarsdotter, and P. Blaha, Phys. Rev. B
58, 5296 (1998).
34. X-G. Wang, W. Weiss, Sh.K. Shaikhutdinov, M. Ritter,
M. Petersen, F. Wagner, R. Schlo¨gl, and M. Scheffler, Phys. Rev.
Lett. 81, 1038 (1998).
REFERENCES
1. A.R. Yavari, P.J. Desre, and T. Benameur, Phys. Rev. Lett. 68,
2235 (1992).
2. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson, J. Appl.
Phys. 73, 2794 (1993).
3. J. Eckert, J.C. Holzer, and W.L. Johnson, J. Appl. Phys. 73, 131
and 2794 (1993).
4. E. Ma, M. Atzmon, and F. Pinkerton, J. Appl. Phys. 74, 955
(1993).
5. J.Z. Jiang, U. Gonser, C. Gente, and R. Bormann, Appl. Phys.
Lett. 63, 1056 (1993).
6. O. Drbohlav and A.R. Yavari, Acta Metall. Mater. 43, 1799
(1995).
7. E. Ma and M. Atzmon, Mater. Chem. Phys. 39, 249 (1995).
8. G. Mazzone and M. Vittori Anitisari, Phys. Rev. B 5, 441 (1996).
9. V.G. Harris, K.M. Kemner, B.N. Das, N.C. Koon, A.E. Ehrlich,
J. Kirkland, J. Woicik, P. Crespo, A. Hernando, and A. Garcia
Escorial, Phys. Rev. B 54, 6929 (1996).
35. W.B. Pearson, A Handbook of Lattice Spacing and Structures of
Metals and Alloys (Pergamon, Oxford, United Kingdom, 1958).
36. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 50, 697 (1944).
37. C. Kittle, Introduction to Solid State Physics, 4th ed. (John Wiley
& Sons, New York, 1971).
38. Y. Zhou, L. Zhong, W. Zhang, and D. Wang, J. Appl. Phys. 81, 1
(1997).
39. H. Jansen and G. Prinz (private communications).
40. C. Barrett and T.B. Massalski, Structure of Metals, 3rd revised
edition (Pergamon Press, New York, 1980), p. 372.
41. M. Lu and C.L. Chien, J. Appl. Phys. 67, 5787 (1990).
42. J.Q. Xiao and C.L. Chien, J. Appl. Phys. 70, 6415 (1991).
43. P.P. Macri, P. Rose, R. Frattini, S. Enzo, G. Prinicipi, W.X. Hu,
and N. Cowlam, J. Appl. Phys. 76, 4061 (1994).
10. L.B. Hong and B. Fultz, Acta Mater. 46, 2937 (1998).
658
J. Mater. Res., Vol. 15, No. 3, Mar 2000
Downloaded: 15 Mar 2015
IP address: 130.56.64.29