A. V. Butin et al. / Tetrahedron Letters 52 (2011) 5255–5258
5257
was described recently.25 To the best of our knowledge, we have de-
scribed here the first example of the transformation of a pyrazoline
into a pyrazole via aromatic compound elimination.26 The process of
Madeira, M.; Karanam, B.; Green, M.; Forrest, M. J.; Abbadie, C.; McGowan, E.;
Mistry, S.; Jochnowitz, N.; Duffy, J. L. Bioorg. Med. Chem. Lett. 2011, 21, 869–873.
11. Da Settimo, F.; Simorini, F.; Taliani, S.; La Motta, C.; Marini, A. M.; Salerno, S.;
Bellandi, M.; Novellino, E.; Greco, C.; Cosimelli, B.; Da Pozzo, E.; Costa, B.;
Simola, N.; Morelli, M.; Martini, C. J. Med. Chem. 2008, 51, 5798–5806.
12. (a) Seggio, A.; Priem, G.; Chevallier, F.; Mongin, F. Synthesis 2009, 3617–3632;
(b) Taliani, S.; Da Pozzo, E.; Bellandi, M.; Bendinelli, S.; Pugliesi, I.; Simorini, F.;
La Motta, C.; Salerno, S.; Marini, A. M.; Da Settimo, F.; Cosimelli, B.; Greco, G.;
Novellino, E.; Martini, C. J. Med. Chem. 2010, 53, 4085–4093; (c) Velankar, A. D.;
Quintini, G.; Prabhu, A.; Weber, A.; Hunaeus, G.; Voland, B.; Wuest, M.; Orjeda,
C.; Harel, D.; Varghese, S.; Gore, V.; Patil, M.; Gayke, D.; Herdemann, M.; Heit, I.;
Zaliani, A. Bioorg. Med. Chem. 2010, 18, 4547–4559; (d) Watanabe, H.; Ono, M.;
Haratake, M.; Kobashi, N.; Saji, H.; Nakayama, M. Bioorg. Med. Chem. 2010, 18,
4740–4746; (e) Herdemann, M.; Heit, I.; Bosch, F.-U.; Quintini, G.; Scheipers,
C.; Weber, A. Bioorg. Med. Chem. Lett. 2010, 20, 6998–7003; (f) Pike, V. W.;
Taliani, S.; Lohith, T. G.; Owen, D. R. J.; Pugliesi, I.; Da Pozzo, E.; Hong, J.; Zoghbi,
S. S.; Gunn, R. N.; Parker, C. A.; Rabiner, E. A.; Fujita, M.; Innis, R. B.; Martini, C.;
Da Settimo, F. J. Med. Chem. 2011, 54, 366–373.
13. For recent publications on the synthesis of 2,3-di(hetero)arylindoles, see: (a)
Kim, T.; Kim, K. Tetrahedron Lett. 2010, 51, 868–871; (b) Kraus, G. A.; Guo, H.;
Kumar, G.; Pollock, G.; Carruthers, H.; Chaudhary, D.; Beasley, J. Synthesis 2010,
1386–1393; (c) Niu, T.; Zhang, Y. Tetrahedron Lett. 2010, 51, 6847–6851; (d) Su,
Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12, 5462–5465.
14. Medarde, M.; Ramos, A. C.; Caballero, E.; Peláez-Lamamié de Clairac, R.; López,
J. L.; Grávalos, D. G.; San Feliciano, A. Bioorg. Med. Chem. Lett. 1999, 9, 2303–
2308.
2-acylvinylgroupremovalfrom
ported previously.
a,b-unsaturatedketoneswasnotre-
In summary, we have reported on the unusual removal of a 2-
acetylvinyl group from C3 of an indole by heating with phenylhydr-
azine hydrochloride in DMF or DMA to afford 3-unsubstituted
2-(hetero)arylindoles. This transformation, which proceeds via the
formation of 5-indolylpyrazolines followed by indole elimination,
is a new facet of a,b-unsaturated ketone reactivity. The described
procedure, together with the previously described reaction of 2-
furylanilines with (hetero)aromatic aldehydes, allow for the prepa-
ration of both 3-substituted- and 3-unsubstituted 2-arylindoles
including 6-substituted examples and 2-furylindoles which are
not easily prepared by reported procedures. Further study of this
new pattern of reactivity of a,b-unsaturated ketones is ongoing.
Acknowledgments
15. del Rey, B.; Ramos, A. C.; Caballero, E.; Inchaustti, A.; Yaluff, G.; Medarde, M.;
Rojas de Arias, A.; San Feliciano, A. Bioorg. Med. Chem. Lett. 1999, 9, 2711–2714.
16. Zhang, X.; He, Y.; Liu, S.; Yu, Z.; Jiang, Z.-X.; Yang, Z.; Dong, Y.; Nabinger, S. C.;
Wu, L.; Gunawan, A. M.; Wang, L.; Chan, R. J.; Zhang, Z.-Y. J. Med. Chem. 2010,
53, 2482–2493.
17. (a) Butin, A. V.; Smirnov, S. K.; Stroganova, T. A.; Bender, W.; Krapivin, G. D.
Tetrahedron 2007, 63, 474–491; (b) Dmitriev, A. S.; Abaev, V. T.; Bender, W.;
Butin, A. V. Tetrahedron 2007, 63, 9437–9447; (c) Butin, A. V.; Tsiunchik, F. A.;
Abaev, V. T.; Zavodnik, V. E. Synlett 2008, 1145–1148; (d) Butin, A. V.; Nevolina,
T. A.; Shcherbinin, V. A.; Uchuskin, M. G.; Serdyuk, O. V.; Trushkov, I. V.
Synthesis 2010, 2969–2978; (e) Butin, A. V.; Nevolina, T. A.; Shcherbinin, V. A.;
Trushkov, I. V.; Cheshkov, D. A.; Krapivin, G. D. Org. Biomol. Chem. 2010, 8,
3316–3327.
We thank the Russian Foundation of Basic Research (Grant 10-
03-00254a) and the Ministry of Education and Science of the Rus-
sian Federation (Grant 2.1.1/12031) for financial support of this
work.
References and notes
1. (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873–2920; (b) Bellina, F.; Rossi,
R. Tetrahedron 2009, 65, 10269–10310; (c) Boorman, T. C.; Larrosa, I. Prog.
Heterocycl. Chem. 2010, 22, 1–20.
2. For some recent publications on the synthesis of 2-(hetero)arylindoles, see: (a)
Verniest, G.; England, D.; De Kimpe, N.; Padwa, A.; Mao, H.; Wan, J.-P.; Pan, Y.;
Sun, C. Tetrahedron Lett. 2010, 51, 1844–1846; (b) Arcadi, A.; Cianci, R.; Ferrara,
G.; Marinelli, F. Tetrahedron 2010, 66, 2378–2383; (c) Rohini, R.; Muralidhar, P.
R.; Shanker, K.; Ravinder, V.; Hu, A. Eur. J. Med. Chem. 2010, 45, 1200–1205; (d)
Beaumard, F.; Dauban, P.; Dodd, R. H. Synthesis 2010, 4033–4042; (e) Boyer, A.;
Isono, N.; Lackner, S.; Lautens, M. Tetrahedron 2010, 66, 6468–6482; (f)
Borthakur, M.; Gogoi, S.; Gogoi, J.; Boruah, R. C. Tetrahedron Lett. 2010, 51,
5160–5163; (g) Carpita, A.; Ribecai, A.; Stabile, P. Tetrahedron 2010, 66, 7169–
7178; (h) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.;
DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676–14681; (i) Ackermann, L.; Song,
W.; Sandmann, R. J. Organomet. Chem. 2011, 696, 195–201.
3. (a) Kaufmann, D.; Pojarova, M.; Vogel, S.; Liebl, R.; Gastpar, R.; Gross, D.;
Nishino, T.; Pfaller, T.; von Angerer, E. Bioorg. Med. Chem. 2007, 15, 5122–5136;
(b) Jacquemard, U.; Dias, N.; Lansiaux, A.; Bailly, C.; Loge, C.; Robert, J.-M.;
Lozach, O.; Maijer, L.; Merour, J.-Y.; Routier, S. Bioorg. Med. Chem. 2008, 16,
4932–4953; (c) Bursavich, M. G.; Brooijmans, N.; Feldberg, L.; Hollander, I.;
Kim, S.; Lombardi, S.; Park, K.; Mallon, R.; Gilbert, A. M. Bioorg. Med. Chem. Lett.
2010, 20, 2586–2590; (d) Ziedan, N. I.; Stefanelli, F.; Fogli, S.; Westwell, A. D.
Eur. J. Med. Chem. 2010, 45, 4523–4530.
4. (a) Colletti, S. L.; Li, C.; Fisher, M. H.; Wyvratt, M. J.; Meinke, P. T. Tetrahedron
Lett. 2000, 41, 7825–7829; (b) Reichwald, C.; Shimony, O.; Dunkel, U.;
Sacerdoti-Sierra, N.; Jaffe, C. L.; Kunick, C. J. Med. Chem. 2008, 51, 659–665;
(c) Farahat, A. A.; Kumar, A.; Say, M.; Barghash, A. E. M.; Goda, F. E.; Eisa, H. M.;
Wenzler, T.; Brun, R.; Liu, Y.; Mickelson, L.; Wilson, W. D.; Boykin, D. W. Bioorg.
Med. Chem. 2010, 18, 557–566.
5. (a) Biradar, J. S.; Sasidhar, B. S.; Parveen, R. Eur. J. Med. Chem. 2010, 45, 4074–
4078; (b) Praveen, C.; DheenKumar, P.; Muralidharan, D.; Perumal, P. T. Bioorg.
Med. Chem. Lett. 2010, 20, 7292–7296.
6. (a) Ambrus, J. I.; Kelso, M. J.; Bremner, J. B.; Ball, A. R.; Casadei, G.; Lewis, K.
Bioorg. Med. Chem. Lett. 2008, 18, 4294–4297; (b) Opperman, T. J.; Williams, J.
D.; Houseweart, C.; Panchal, R. G.; Bavari, S.; Peet, N. P.; Moir, D. T.; Bowlin, T. L.
Bioorg. Med. Chem. 2010, 18, 2123–2130.
7. (a) Beaulieu, P. L.; Jolicoeur, E.; Gillard, J.; Brochu, C.; Coulombe, R.; Dansereau,
N.; Duan, J.; Garneau, M.; Jakalian, A.; Kühn, P.; Lagase, L.; LaPlante, S.;
McKercher, G.; Perrault, S.; Poirier, M.; Poupart, M.-A.; Stammers, T.; Thauvette,
L.; Thavonekham, B.; Kukolj, G. Bioorg. Med. Chem. Lett. 2010, 20, 857–861; (b)
LaPlante, S. R.; Gillard, J. R.; Jakalian, A.; Aubry, N.; Coulombe, R.; Brochu, C.;
Tsantrizos, Y. S.; Poirier, M.; Kukolj, G.; Beaulieu, P. L. J. Am. Chem. Soc. 2010,
132, 15204–15212.
8. Rai, R.; Kolesnikov, A.; Li, Y.; Young, W. B.; Leahy, E.; Sprengeler, P. A.; Verner,
E.; Shrader, W. D.; Burgess-Henry, J.; Sangalang, J. C.; Allen, D.; Chen, X.; Katz, B.
A.; Luong, C.; Elrod, K.; Cregar, L. Bioorg. Med. Chem. Lett. 2001, 11, 1797–1800.
9. Stevenson, G. I.; Smith, A. L.; Lewis, S.; Michie, S. G.; Neduvelil, J. G.; Patel, S.;
Marwood, R.; Patel, S.; Castro, J. L. Bioorg. Med. Chem. Lett. 2000, 10, 2697–2699.
10. Tyagarajan, S.; Chakravarty, P. K.; Park, M.; Zhou, B.; Herrington, J. B.; Ratliff, K.;
Bugianesi, R. M.; Williams, B.; Haedo, R. J.; Swensen, A. M.; Warren, V. A.;
Smith, M.; Garcia, M.; Kaczorowski, G. J.; McManus, O. B.; Lyons, K. A.; Li, X.;
18. Butin, A. V.; Uchuskin, M. G.; Pilipenko, A. S.; Tsiunchik, F. A.; Cheshkov, D. A.;
Trushkov, I. V. Eur. J. Org. Chem. 2010, 920–926.
19. For a recent review, see: Druzhinin, S. V.; Balenkova, E. S.; Nenajdenko, V. G.
Tetrahedron 2007, 63, 7753–7808.
20. (a) Kumar, A.; Sharma, S.; Bajaj, K.; Bansal, D.; Sharma, S.; Saxena, A. K. K.; Lata,
S.; Gupta, B.; Srivastava, V. K. Ind. J. Chem. 2003, 42B, 1979–1984; (b) El-Shihi, T.
H.; Abdel Latif, N. A.; El-Sawy, E. R. Egypt. J. Chem. 2005, 48, 365–376; (c)
Budakoti, A.; Bhat, A. R.; Athar, F.; Azam, A. Eur. J. Med. Chem. 2008, 43, 1749–
1757; (d) Reddy, M. V. R.; Billa, V. K.; Pallela, V. R.; Mallireddigari, M. R.;
Boominathan, R.; Gabriel, J. L.; Reddy, E. P. Bioorg. Med. Chem. 2008, 16, 3907–
3916; (e) Budakoti, A.; Bhat, A. R.; Azam, A. Eur. J. Med. Chem. 2009, 44, 1317–
1325.
21. (a) Gorbunova, V. P.; Grekova, G. S.; Suvorov, N. N.; Gus’kova, T. A.; Kukushkina,
T. S.; Pershin, G. N. Pharm. Chem. J. 1977, 11, 897–900 [Khim.-Farm. Zh. 1977,
11, No 7, 21–25]; (b) Dandia, A.; Sehgal, V.; Singh, P. Indian J. Chem. 1993, 32B,
1288–1291; (c) Cocconcelli, G.; Diodato, E.; Caricasole, A.; Gaviraghi, G.;
Genesio, E.; Ghiron, C.; Magnoni, L.; Pecchioli, E.; Plazzi, P. V.; Terstappen, G. C.
Bioorg. Med. Chem. 2008, 16, 2043–2052.
22. (a) Singh, S. K.; Saibaba, V.; Rao, K. S.; Reddy, P. G.; Daga, P. R.; Rajjak, S. A.;
Misra, P.; Rao, Y. K. Eur. J. Med. Chem. 2005, 40, 977–990; (b) Zhang, N.; Ayral-
Kaloustian, S.; Anderson, J. T.; Nguyen, T.; Das, S.; Venkatesan, A. M.;
Brooijmans, N.; Lucas, J.; Yu, K.; Hollander, I.; Mallon, R. Bioorg. Med. Chem.
Lett. 2010, 20, 3526–3529.
23. Phenylhydrazine hydrochloride (2.4 mmol) was added slowly to a solution of
compound 2a (2 mmol) in refluxing EtOH/1,4-dioxane mixture (1:2, 15 mL).
The mixture was refluxed for ca. 2 min until full dissolution of the hydrazine
and then cooled to room temperature. The resulting red precipitate was
filtered, washed with cold EtOH (5 mL) and air-dried. DMF (10 mL) was added
to the residue and the mixture was refluxed for 1 min, poured into H2O
(100 mL), extracted with CH2Cl2 (3 Â 20 mL), dried over Na2SO4 and
evaporated under reduced pressure. The residue was purified by column
chromatography on silica gel (eluent: CH2Cl2/petroleum ether, 1:6). Indole 3a
was recrystallized from CH2Cl2/petroleum ether.
Compound 3a: 6-Chloro-2-(3,4-dimethoxyphenyl)-1H-indole: colorless solid,
mp 153–154 °C. IR (KBr):
m
3432, 1540, 1500, 1472, 1452, 1428, 1296, 1248,
1216, 1148, 1032, 1012, 808 cmÀ1
.
1H NMR (300 MHz, CDCl3): d 8.32 (1H, br s),
7.49 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 1.8 Hz), 7.17 (1H, d, J = 8.1 Hz), 7.15 (1H,
s) 7.07 (1H, dd, J = 1.8, 8.4 Hz), 6.92 (1H, d, J = 8.1 Hz), 6.68 (1H, br s), 3.96 (3H,
s), 3.92 (3H, s). 13C NMR (75 MHz, CDCl3): d 149.4, 149.2, 138.8, 137.0, 127.9,
127.6, 125.1, 121.1, 120.8, 117.7, 111.6, 110.7, 108.9, 98.9, 55.9 (2C). MS (EI,
70 eV): m/z (%) = 289/287 (33/100, M+), 274/272 (8/24), 243 (15), 229 (23), 214
(15), 209 (33), 193 (58), 165 (24), 144 (15), 59 (16), 43 (22). Anal. Calcd for
C16H14ClNO2: C, 66.79; H 4.90; N, 4.87. Found: C, 67.01; H, 5.01; N, 5.04.
24. General procedure: mixture of compound (2 mmol), phenylhydrazine
A
2
hydrochloride (2.4 mmol) and DMF (10 mL) was refluxed for 2 min (TLC
monitoring). The reaction mixture was poured into H2O (100 mL) and
extracted with CH2Cl2 (3 Â 20 mL). The combined organic fractions were