5148
M. Alfonsi et al. / Tetrahedron Letters 52 (2011) 5145–5148
16. Zhang, D.-H.; Yao, L.-F.; Wei, Y.; Shi, M. Angew. Chem., Int. Ed. 2011, 50, 2583–
In summary, our preliminary results show the feasibility of the
2587. 1H NMR and 13C NMR of compounds 6a: 1H NMR (CDCl3): d = 2.1 (s, 6H),
3.8 (s, 3H), 3.8 (s, 3H), 6.5 (dd, J = 8.6 Hz, J = 2.6 Hz, 1H), 6.6 (d, J = 2.6 Hz, 1H),
6.6 (s, 2H), 7.1 (d, J = 8.6 Hz, 1H), and 13C NMR (CDCl3): d = 10.1, 55.5, 55.7, 99.7,
104.0, 118.6, 119.8, 124.2, 126.1, 153.7, 158.7.
one-pot/one-flask synthesis of functionalized quinolines from
commercial available anilines and propargylic bromide derivatives.
The formation of the quinolines proceeds through the sequential
N-propargylation of aniline derivative followed by regioselective
6-endo-dig transition metal-catalyzed intramolecular hydroaryla-
tion of the N-propargylamine intermediate and aromatization
reaction. NaAuCl4ꢀ2H2O represents a suitable catalyst for the
sequential procedure which occurs under mild reaction conditions
in the eco-friendly ethanol as the reaction medium. The catalytic
efficiency of both Au(III) and Au(I) catalysts in the sequential pro-
cess has been investigated and compared with different transition
metal salts.
17. Zotto, C. D.; Wehbe, J.; Virieux, A.; Campagne, J.-M. Synlett 2008, 2033–2035.
18. Bhilare, S. V.; Darvatkar, N. B.; Deorukhkar, A. R.; Raut, D. G.; Trivedi, G. K.;
Salunkhe, M. M. Tetrahedron Lett. 2009, 50, 893–896.
19. Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. J. Org.
Chem. 2003, 68, 6959–6966.
20. Arcadi, A.; Cerichelli, G.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Tetrahedron
Lett. 2000, 41, 9195–9198.
21. Pastine, S. J.; Youn, S. W. D.; Sames, D. Org. Lett. 2003, 5, 1055–1058.
22. Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis 2004, 610–618.
23. General procedure for the alkylation/gold-catalyzed annulation reactions of
anilines with propargylic bromide derivatives: to
a solution of aniline 1
(2.0 mmol) in absolute ethanol (2 mL) were added propargylic bromide 2
(0.66 mmol) and NaAuCl4ꢀ2H2O (0.05 mmol). The resulting mixture was heated
at 70 °C for 24 h. The reaction was monitored by TLC. After cooling, the solvent
was concentrated under reduced pressure. The residue was dissolved in ethyl
acetate and extracted three times with a saturated solution of NaHCO3. The
combined aqueous extracts were extracted three times with ethyl acetate. The
combined organic extracts were dried (Na2SO4) and evaporated under reduced
pressure. The residue was purified by flash chromatography (silica gel, n-
hexanes–ethyl acetate mixtures) to give quinoline 4. 1H NMR and 13C NMR of
compounds 4. Compound 4a: 1H NMR (CDCl3): d = 3.84 (s, 3H), 3.99 (s, 3H),
6.57 (d, J = 2.5 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 7.30 (dd, J = 8.4 Hz, J = 4.2 Hz,
1H), 7.93 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H), 8.70 (ddd, J = 4.2 Hz, J = 1.6 Hz,
J = 0.55 Hz, 1H). 13C NMR (CDCl3): d = 55.3, 55.8, 96.6, 101.0, 121.9, 129.8,
134.5, 136.7, 146.5, 156.1, 158.1. Compound 4b: 1H NMR (CDCl3): d = 3.95 (s,
3H), 4.03 (s, 3H), 6.75 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 7.43 (dd,
J = 8.5 Hz, J = 4.3 Hz, 1H), 8.55 (dd, J = 8.5 Hz, J = 1.7 Hz, 1H), 8.95 (dd, J = 4.3 Hz,
J = 1.7 Hz, 1H). 13C NMR (CDCl3): d = 55.7, 55.9, 103.6, 106.8, 120.8, 121.6,
130.9, 140.2, 148.5, 149.2, 149.4. Compound 4c: 1H NMR (CDCl3): d = 1.37 (t,
J = 7.42 Hz, 3H), 3.00 (q, J = 7.42 Hz, 2H), 3.92 (s, 3H), 4.04 (s, 3H), 6.70 (d,
J = 2.47 Hz, 1H), 6.78 (d, J = 2.20 Hz, 1H), 7.22 (d, J = 4.12 Hz, 1H), 8.67 (d,
J = 4.40 Hz, 1H). 13C NMR (CDCl3): d = 13.2, 25.2, 55.2, 55.9, 92.8, 100.3, 120.4,
128.8, 136.5, 146.4, 147.8, 156.7, 157.8. Compound 4d: 1H NMR (CDCl3):
d = 1.27 (t, J = 7.3 Hz, 3H), 3.27 (q, J = 7.4 Hz, 2H), 3.88 (s, 3H), 4.02 (s, 3H), 6.74
(d, J = 8.7 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 7.18 (d, J = 4.4 Hz, 1H), 8.77 (d,
J = 4.5 Hz, 1H). 13C NMR (CDCl3): d = 15.5, 29.8, 55.3, 55.8, 104.3, 106.2, 120.7,
122.1, 141.3, 148.9, 149.5, 150.4, 151.4. Compound 4e: 1H NMR (CDCl3):
d = 2.74 (s, 3H), 3.88 (s, 3H), 4.03 (s, 3H), 6.61 (d, J = 2.5 Hz, 1H), 6.69 (d,
J = 2.5 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl3):
d = 25.2, 55.3, 55.9, 96.7, 100.9, 122.8, 127.9, 135.0, 136.1, 155.3, 155.5, 157.3.
Compound 4f: 1H NMR (CDCl3): d = 2.63 (s, 3H), 3.94 (s, 3H), 4.05 (s, 3H), 6.72
(d, J = 2.5 Hz, 1H), 6.74 (d, J = 2.5 Hz, 1H), 7.23 (d, J = 4.4 Hz, 1H), 8.63 (d,
J = 4.4 Hz, 1H). 13C NMR (CDCl3): d = 19.3, 55.4, 56.0, 93.2, 100.6, 122.9, 129.7,
130.9, 142.5, 146.3, 156.7, 158.0.
Acknowledgments
The authors thank the Ministero dell’Università, dell’Istruzione
e della Ricerca (MIUR), Roma and the Università degli Studi di
L’Aquila for support of this work.
References and notes
1. Chernyak, N.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2743–2746.
2. Zhou, Y.; Li, J.; Ji, X.; Zhou, W.; Zhang, X.; Qian, W.; Jiang, H.; Liu, H. J. Org. Chem.
2011, 76, 1239–1249.
3. Worlikar, A.; Kesharwani, T.; Yao, T.; Larock, R. C. J. Org. Chem. 2007, 72, 1347–
1353.
4. Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2007, 7, 763–766.
5. Dal Zotto, C.; Wehbe, J.; Virieux, D.; Campagne, J.-M. Synlett 2008, 2033–2035.
6. Praveen, C.; Paramavisan, P.; Perumal, T. Synlett 2011, 521–524.
7. Jiang, C.; Xu, M.; Wang, S.; Wang, H.; Yao, Z.-J. J. Org. Chem. 2010, 75, 4323–
4325.
8. Fei, N.; Hou, Q.; Wang, S.; Wang, H.; Yao, Z.-J. Org. Biomol. Chem. 2010, 8, 4096–
4103.
9. (a) Lykakis, I. N.; Efe, C.; Gryparis, C.; Strakakis, M. Eur. J. Org. Chem. 2011,
2334–2338; (b) Menon, R. S.; Findlay, A. D.; Bissember, A. C.; Banwell, M. G. J.
Org. Chem. 2009, 74, 8901–8903.
10. Morán-Poladura, P.; Suárez-Pantiga, S.; Piedrafita, M.; Rubio, E.; González, J. M.
J. Organomet. Chem. 2011, 696, 12–15.
11. Gronnier, C.; Odabachian, Y.; Gagosz, F. Chem. Commun. 2011, 47, 218–220.
12. Jurberg, I. D.; Gagosz, F. J. Organomet. Chem. 2011, 696, 37–41.
13. Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun. 2010, 46, 1748–1750.
14. Majumdar, K. C.; Nandi, R. K.; Ganai, S.; Taher, A. Synlett 2011, 116–120.
15. Saito, A.; Oda, S.; Fukaya, H.; Hanzawa, Y. J. Org. Chem. 2009, 74, 1517–1524.