5816
P. Rajakumar et al. / Tetrahedron Letters 52 (2011) 5812–5816
3. Nakade, S.; Kanzaki, T.; Kubo, W.; Kitamura, T.; Wade, Y.; Yanagida, S. J. Phys.
Table 3
Chem. B 2005, 109, 3480–3487.
4. Boschloo, G.; Haggmann, L.; Hagfeldt, A. J. Phys. Chem. B 2006, 110, 13144–
13150.
5. (a) Lee, J. W.; Kim, J. H.; Kim, B. K. Tetrahedron Lett. 2006, 47, 2683–2686; (b)
Kim, C.; Kim, H. Molecules 2009, 14, 1605–1613.
The photovoltaic properties of dendrimers with KI and I2 redox couple under
illumination of 40 mW cmÀ2
S. no
Electrolyte system
Jsc/mA cmÀ2
Voc/mV
FF
Efficiency
1
2
3
4
5
6
7
KI/I2
2.1
2.6
3.5
5.1
2.8
4.0
6.2
440
460
520
660
548
570
780
0.51
0.50
0.52
0.56
0.49
0.54
0.59
1.2
1.5
2.4
4.7
1.9
3.0
7.1
6. (a) Adronov, A.; Frechet, J. M. J. Chem. Commun. 2000, 1701–1710; (b) Gilat, S.
L.; Adronov, A.; Frechet, J. M. J. Angew. Chem., Int. Ed. 1999, 38, 1422.
7. (a) Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; Vogtle, F.
Chem Commun. 2000, 853–854; (b) Jamnes, T. D.; Shinmori, H.; Takeuchi, M.;
Shinkai, S. Chem. Commun. 1996, 705.
8. Astruc, D.; Boisselier, E.; Orneals, C. T. Chem. Rev. 2010, 110, 1857–1959.
9. Kolb, C. H.; Finn, G. M.; Sharpless, B. K. Angew. Chem., Int. Ed. 2001, 40, 2004.
10. (a) David, O.; Maisonneuve, S.; Xie, J. Tetrahedron Lett. 2007, 48, 6527–6530; (b)
Haridas, V.; Lal, K.; Sharma, Y. K. Tetrahedron Lett. 2007, 48, 4719–4722; (c)
Chandrasekar, S.; Basu, D.; Rambabu, Ch. Tetrahedron Lett. 2006, 47, 3059–
3063.
11. (a) Batista, R. M. F.; Costa, S. P. G.; Rapso, M. M. M. Tetrahedron Lett. 2004, 45,
2825–2828; (b) Subhas Bose, D.; Idrees, M. J. Org. Chem. 2006, 71, 8261–8263;
(c) Li, Z.; Yang, Q.; Quian, X. Bioorg. Med. Chem. Lett. 2005, 15, 3143–3146.
12. Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.;
Arakawa, H. J. Phys. Chem. B 2002, 106, 1363–1371.
KI/I2/1
KI/I2/1a
KI/I2/1b
KI/I2/2
KI/I2/2a
KI/I2/2b
A similar trend in the power conversion performance is ob-
served among the dendrimers 2, 2a, and 2b. Dendrimers 1b and
2b exhibit better power conversion efficiency and higher Voc values
than all the dendrimers. The DSSC performance characteristics are
summarized in Table 3. To conclude, the presence of electron
donating units and heterocyclic units, such as triazole and benzo-
thiazole significantly alter the Voc and Jsc values of dye sensitized
solar cells and thereby increase the efficiency of DSSC.
13. Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G. F.; Debnath, M. L.; Klunk, W. E. J.
Med. Chem. 2003, 46, 2740–2754.
14. Hutchinson, I.; Jenninga, A. S.; Vishnuvajjala, B. R.; Westwell, A. D.; Stevens, M.
F. G. J. Med. Chem. 2002, 45, 744–747.
In conclusion, dendrimers with benzothiazole as the surface unit
were synthesized by convergent synthetic strategy in good yields.
All the dendrimers exhibit excellent optical and electrochemical
properties. The cyclic voltammetric studies reveal that the benzothi-
azole molecule undergoes a quasireversible single electron transfer
process in cathodic scan direction and irreversible oxidation was ob-
served at anodic direction for all the dendritic architectures. DSSC
studies clearly show that as the number of benzothiazole and tria-
zole units increase, DSSC performance also increases. Among all
the dendritic structures, dendrimer 2b exhibits better power con-
15. Caujolle, R.; Loiseau, P.; Payard, M.; Gayral, P. Ann. Pharm. Fr. 1989, 47, 68–73.
16. Yamamoto, K.; Fujita, M.; Tabashi, K.; Kawashima, Y.; Kato, E.; Oya, M.; Iso, J.;
Iwao, T. J. Med. Chem. 1998, 31, 919–930.
17. Yoshida, H.; Nakao, R.; Nohta, H.; Yamaguchi, M. Dyes Pigments 2000, 47, 239–
245.
18. Petkov, I.; Deligeorgiev, T.; Markov, P.; Evstatiev, M.; Fakirov, S. Polym. Degrad.
Stab. 1991, 33, 53–66.
19. Rajakumar, P.; Raja, S. Tetrahedron Lett. 2008, 46, 6539–6542.
20. Rajakumar, P.; Anandhan, R.; Kalpana, V. Synlett 2009, 1417.
21. Bahrami, K.; Mehdi Khodaei, M.; Naali, F. J. Org. Chem. 2008, 73, 6835–6837.
22. Kwon, T. H.; Kim, M. K.; Kwon, J.; Shin, T. Y.; Park, S. J.; Lee, C. L.; Kim, J. J.; Hong,
J. I. Chem. Mater. 2007, 19, 3673.
23. Rajakumar, P.; Raja, R. Tetrahedron Lett. 2010, 51, 4365–4370.
24. Roffia, S.; Feroci, G. J. Electroanal. Chem. 1978, 88, 169–173.
25. Osaheni, J. A.; Jenekhe, S. A. Chem. Mater. 1995, 7, 672–682.
26. Fabrication of cell assembly
version efficiency (g) of 7.1% than all other dendrimers.
Acknowledgments
The DSSC, whose photo active area being 1 cm2 (1 cm x 1 cm), was fabricated
on a conducting glass covered with Fluorinated Tin Oxide (F:SnO2) (FTO) and
nano-crystalline TiO2 (degussa) cast by the procedure reported earlier.32 The
electrodes were immersed in a 5X10À5 M solution of the sensitizer namely, cis-
dithiocyanoto bis(2, 2’-bipyridyl-4,4’-dicarboxylate)-ruthenium(II) (N3 dye) in
ethanol for 20 h at room temperature before being washed with ethanol and
dried in air. The dendrimer based electrolyte solution was injected into the
space between two electrodes. The electrolyte solution was composed of
2.2 Â 10À5 M of KI, 3 X 10À6 M of I2, 8.5 X 10À6 M of the dendrimer additives in
DMF (10 mL) solvent. Subsequently, the platinum counter electrode was
pressed on top of the polymer film without any special sealing. With the aid of
a BAS 100A Electrochemical Analyzer, photovoltaic tests of the fabricated
DSSCs were carried out by measuring the current–voltage (I–V) characteristics
under illumination of 40 mW cmÀ2 at AM 1.5 condition using 150 W Xe lamp
as light source.
The authors thank the University Grant Commission (UGC),
New Delhi for financial assistance and the DST-FIST, New Delhi
for NMR spectral facility. V.K thanks Dr. K. Pandian, Department
of Inorganic chemistry, the University of Madras for CV studies.
Supplementary data
Supplementary data (experimental procedure, synthetic and
spectroscopic data for various dendrimers) associated with this
article can be found, in the online version, at doi:10.1016/
27. (a) Padinger, F.; Rittberger, R. S.; Sacriftci, N. S. Funct. Mater. 2003, 13, 85–88;
(b) Jinag, D. L.; Aida, T. Nature 1997, 388, 454–456.
28. Kusama, H.; Arakawa, H. J. Photochem. Photobiol., A 2003, 160, 171–179.
29. Kusama, Y.; Konishi, Y.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells.
2003, 80, 167–179.
References and notes
1. (a) Adachi, M.; Murta, Y.; Takao, J.; Sakamoto, M.; Wang, F. J. Am. Chem. Soc.
2004, 126, 14943; (b) Lo, S.; Burn, P. L. Chem. Rev. 2007, 107, 1097; (c)
Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.;
Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382; (d) Koh, J. H.;
Koh, J. K.; Park, N. G.; Kim, J. H. Sol. Energy Mater. Sol. Cells 2010, 94, 436–441.
2. O’Regan, B.; Gratzel, M. Nature 1991, 353, 737–740.
30. Kusama, H.; Arakawa, H. J. Photochem. Photobiol. A. 2004, 164, 103–110.
31. (a) Younes, A. H.; Ghaddar, T. H. Inorg. Chem. 2008, 47, 3408–3414; (b)
Nakashima, T.; Satoh, N.; Albrecht, K.; Yamamoto, K. Chem. Mater. 2008, 20,
2538–2543; (c) Rajakumar, P.; Raja, S.; Satheeshkumar, C.; Ganesan, S.;
Maruthamuthu, P.; Suthanthiraj, S. A. New J. Chem. 2010, 34, 2247–2253.
32. Sirimanne, P. M.; Shirata, T.; Soga, T. J. Solid State Chem. 2002, 166, 142–147.