4
Table 3. Control experiments.a
Youji Huaxue, 2009, 29, 1708-1718; (d) Enguehard-Gueiffier, C.;
Gueiffier, A. Mini-Rev. Med. Chem. 2007, 7, 888-899; (e) Bartholini,
G.; L. E. R. S. Monogr, Ser. 1993, 8, 1; (f) Abignente, E. Actual.
Chim. Ther. 1991, 18, 193-214.
2. (a) Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem.
Psychopharmacol. 1990, 46, 61-72; (b) Harrison, T. S.; Keating, G.
M. CNS Drugs, 2005, 19, 65-89; (c) Mizushige, K.; Ueda, T.; Yukiiri,
K.; Suzuki, H. Cardiovasc. Drug Rev. 2002, 20, 163-174; (d) Ueda,
T.; Mizusgige, K.; Yukiiri, K.; Takahashi, T.; Kohno, M.
Cerebrovasc Dis. 2003, 16, 396-401.
Entry
Solvent
Oxidant
Base
Yield (%)
3a 3a’
~10%
-
-
NRb
-
1
2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
-
Et3N
-
56
36
3. (a) Katritzky, A. R.; Xu, Y.-J.; Tu, H. J. Org. Chem. 2003, 68, 4935-
3
4c
H2O2
H2O2
Trace
73
4937; (b) Chernyak, N.; Gevorgyan, V. Angew. Chem. Int. Ed. 2010
,
Et3N
Trace
49, 2743-2746; (c) Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A.
Chem. Commun. 2015, 51, 1555-1575.
a
Reagents and conditions: 1a (1.2 mmol), 2a (1.0 mmol), Et3N (10 mol %),
H2O2 (3.0 equiv.), CH2Cl2 (2 mL), rt.
4. Humphries, A. C.; Gancia, E.; Gilligan, M. T.; Goodacre, S.; Hallett,
b
No reaction.
D.; Merchant, K. J.; Thomas, S. R. Bioorg. Med. Chem. Lett. 2006
16, 1518-1522.
,
c Reaction performed with in situ generated Michael adduct 3a’
5. Fradley, R. L.; Guscott, M. R.; Bull, S.; Hallett, D. J.; Goodacre, S.
C.; Wafford, K. A.; Garrett, E. M.; Newman, R. J.; O’Meara, G. F.;
Whiting, P. J.; Rosahl, T. W.; Dawson, G. R.; Reynolds, D. S.; Atack,
J. R. J. Psycopharm. 2007, 21, 384-391.
6. Farag, A. M.; Mayhoub, A. S.; Barakat, S. E.; Bayomi, A. H. Bioorg.
Med. Chem. 2008, 16, 4569-4578.
7. Buckley, G. M.; Ceska, T. A.; Fraser, J. L.; Gowers, L.; Groom, C.
R.; Higueruelo, A. P.; Jenkins, K.; Mack, S. R.; Morgan, T.; Parry, D.
M.; Pitt, W. R.; Rausch, O.; Richard, M. D.; Sabina, V. Bioorg. Med.
Chem. Lett. 2008, 18, 3291-3295.
8. (a) Enguehard, C.; Renou, J.-L.; Collot, V.; Hervet, M.; Rault, S.;
Gueiffier, A. J. Org. Chem. 2000, 65, 6572-6575; (b) Nandi, D.;
Jhou, Y.-M.; Lee, J.-Y.; Kuo, B.-C.; Liu, C.-Y.; Huang, P.-W.; Lee,
H. M. J. Org. Chem. 2012, 77, 9384-9390; (c) Palani, T.; Park, K.;
Kumar, M. R.; Jung, H. M.; Lee, S. Eur. J. Org. Chem. 2012, 5038-
5047; (d) Zeng, J.; Tan, Y. J.; Leow, M. L.; Liu, X.-W. Org. Lett.
2012, 14, 4386-4389; (e) Cao, H.; Zhan, H.; Lin, Y.; Lin, X.; Du, Z.;
Jiang, H. Org. Lett. 2012, 14, 1688-1691. (f) Gao, Y.; Yin, M.; Wu,
W.; Huang, H.; Jiang, H. Adv. Synth. Catal. 2013, 355, 2263-2273;
(g) Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Chem. Commun.
2015, 51, 1555-1575.
Based on the above observations, we propose a mechanism as
shown in Scheme 3. Initially, 1a reacts with 2a in the presence of
base to give intermediate 3a’’ through intermolecular Michael
addition. The formation of tautomer 3a’ was confirmed by
control experiments and was successfully isolated. Intermediate
3a’’ undergoes base-catalyzed intramolecular cyclization to
generate intermediate I, which on further oxidation, generates the
final product 3a with the removal of nitroxyl (HNO) and
water.10,15 Nitroxyl may be converted to nitrous or nitric acid
under the oxidative conditions.
9. (a) Wu, Z.; Pan Y.; Zhou, X. Synthesis, 2011, 2255-2260; (b)
Bangade, V. M.; Reddy, B. C.; Thakur, P. B.; Babu, B. M.; Meshram,
H. M. Tetrahedron Lett. 2013, 54, - ; (c) Egner, .;
Gerbling, K. .; oyer, G. -A.; Kr ger, G.; Wegner, P. Pestic. Sci.
1996, 47, 145-158; (d) Dixon, L. I.; Carroll, M. A.; Gregson, T. J.;
Ellames, G. J.; Harrington, R. W.; Clegg, W. Org. Biomol. Chem.
2013, 11, 5877-5884; (e) S. K. Lee and J. K. Park, J. Org. Chem.
2015, 80, 3723-3729.
Scheme 2. Plausible reaction mechanism.
In conclusion, a facile protocol was developed for the
regioselective synthesis of 3-arylimidazo[1,2-a]pyridines in the
presence of an inexpensive base (Et3N), and H2O2 (30% aq.) at
room temperature from readily available starting materials. The
scope of the reaction included several substituted β-nitrostyrenes
and 2- aminopyridines to furnish a wide variety of 3-
arylimidazo[1,2-a]pyridine in moderate to good yield.
10. Santra, S.; Bagdi, A. K.; Majee, A.; Hajra, A. Adv. Synth. Catal.
2013, 355, 1065-1070.
11. (a) Jagadhane, P. B.; Telvekar, V. N.; Synlett. 2014, 25, 2636-2638;
(b) Tachikawa, Y.; Nagasawa, Y.; Furuhashi, S.; Cui, L.; Yamaguchi,
E.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2015, 5, 9591-9593.
12. (a) Monir, K.; Bagdi, A. K.; Ghosh, M.; Hajra, A. Org. Lett. 2014, 16,
4630-4633; (b) Ha, P. T. M.; Lieu, T. N.; Doan, S. H.; Phan, T. T. B.;
Nguyen, T. T.; Truong, T.; Phan, N. T. S. RSC Adv. 2017, 7, 23073-
23082; (c) Yadav, S.; Srivastava, M.; Rai, P.; Tripathi, B. P.; Mishra,
A.; Singh, J.; Singh, J. New J. Chem. 2016, 40, 9694-9701.
13. Devi, E. S.; Alanthadka, A.; Tamilselvi, A.; Nagarajan, S.; Sridharan,
V.; Maheswari, C. U. Org. Biomol. Chem. 2016, 14, 8228-8231.
14. General procedure for the synthesis of substituted 3-
Acknowledgements
Financial support from Dept. of Science and technology, DST,
New Delhi for the award of Extramural research grant (no.
EMR/2016/002485/OC) is gratefully acknowledged.
arylimidazo[1,2-a]pyridines: To a mixture of the β-nitrostyrene
(0.195g, 1.2 mmol) and 2-aminopyridine (0.0941g, 1.0 mmol) in
CH2Cl2 (2.0 mL), Et3N (10 mol%) and aq. H2O2 (3.0 equiv.) was
added and stirred at room temperature for 6 h. The reaction progress
was monitored by Thin Layer Chromatography (TLC) and after
reaction completion, the mixture was extracted with water. The
organic layer was washed with a brine solution and dried over
anhydrous Na2SO4. Removal of the solvent under vacuum afforded
the crude product, which was purified by column chromatography
using a hexane/ethyl acetate mixture.
Supplementary data
Supplementary data associated with this article can be found, in
References
1. Couty, F.; Evano, G. in Comprehensive Heterocyclic Chemistry III,
ed. Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J.
K. Elsevier, Oxford, 2008, vol. 11, p. 409-499; (b) Liu, J.; Chen, Q.
Huaxue Jinzhan, 2010, 22, 631-638; (c) Zhou, J.; Liu, J.; Chen, Q.
15. Gattu, R.; Bhattacharjee, S.; Mahato, K.; Khan, A.T. Org. Biomol.
Chem. 2018, 16, 3760-3770.