D. Y. Lee et al. / Tetrahedron Letters 52 (2011) 3886–3890
3889
Figure 8. Plot of the fluorescent intensity of receptor 4 as a function of metal ion concentrations recorded in a HEPES buffered CH3CN/H2O (7:3, v/v, pH 7.1) solution
(kex = 361 nm). The estimation of Fe3+ at kmax = 462 nm (plot A: 4 + Fe3+ ); 4 + Fe3+ + Cu2+ )) and the estimation of Cu2+ at kmax = 418 nm (plot B: 4 + Cu2+
);
4 + Fe3+ + Cu2+
)).
(
(
(
(
1.86 Â 10À5 M.17 The association constant, Ka, of receptor 4 for Cu2+
in a HEPES buffered CH3CN/H2O (7:3, v/v, pH 7.1) solution was cal-
culated on the basis of the Benesi–Hildebrand plot ( Fig. S7), and it
was found to be 1.0 0.1 Â 103 MÀ1. The stoichiometry of the com-
plex that was formed was determined by the Job’s plot ( Fig. S8),
and it was found to be 1:1.19 A titration with UV–Vis spectroscopy
was also performed (Fig. 7). On the basis of these data, the associ-
ation constant, Ka, of receptor 4 for Cu2+ was calculated to be the
same as that obtained by fluorescence spectroscopy ( Fig. S9,
Ka = 1.0 0.1 Â 103 MÀ1).
References and notes
1. (a) Zhou, Yi; Zhu, C.-Y.; Gao, X.-S.; You, X.-Y.; Yao, C. Org. Lett. 2010, 12, 2566–
2569; (b) Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I.; Hong, C. S.; Kim, J. W.; Yan,
S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. J. Am. Chem. Soc. 2009, 131, 2008–2012;
(c) McRae, R.; Bagchi, P.; Sumalekshmy, S.; Fahrni, C. J. Chem. Rev. 2009, 109,
4780–4827; (d) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108,
1517–1549; (e) Kim, Y.; Kim, S.-J.; Kim, J. S. Org. Lett. 2008, 10, 3801–3804; (f)
Rhee, H. W.; Choi, H.-Y.; Han, K.; Hong, J.-I. J. Am. Chem. Soc. 2007, 129, 4524–
4525; (g) Chang, C. J.; Nolan, E. M.; Jaworski, J.; Okamoto, K.; Hayashi, Y.; Sheng,
M.; Lippard, S. J. Inorg. Chem. 2004, 43, 6774–6779.
2. (a) Xu, Z.; Yoon, J.; Spring, D. R. Chem. Soc. Rev. 2010, 39, 1996–2006; (b) Quang,
D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280–6301; (c) de Silva, A. P.; Vance, T. P.;
West, M. E. S.; Wright, G. D. Org. Biomol. Chem. 2008, 6, 2468–2480; (d)
Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord.
Chem. Rev. 2006, 250, 3094–3117; (e) Prodi, L. New J. Chem. 2005, 29, 20–31; (f)
Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551–8588; (g)
Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116–127.
3. (a) Ramaiah, D.; Neelakandan, P. P.; Nair, A. K.; Avirah, R. R. Chem. Soc. Rev.
2010, 39, 4158–4168; (b) Jung, J. H.; Park, M.; Shinkai, S. Chem. Soc. Rev. 2010,
39, 4286–4302; (c) Kubik, S. Chem. Soc. Rev. 2010, 39, 3648–3663; (d)
Giljohann, D. A.; Mirkin, C. A. Nature 2009, 462, 461–464.
4. (a) Singh, N.; Mulrooney, R. C.; Kaur, N.; Callan, J. F. Chem. Commun. 2008,
4900–4902; (b) Schmittel, M.; Lin, H. W. Angew. Chem., Int. Ed. 2007, 46, 893–
896; (c) Kaur, N.; Kumar, S. Chem. Commun. 2007, 3069–3070; (d) Komatsu, H.;
Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Yoshiichiro, K.; Oka, K.; Suzuki, K. J.
Am. Chem. Soc. 2005, 127, 10798–10799.
The metal binding test shown in Figure 2 revealed that receptor
4 can be developed for the simultaneous estimation of Fe3+ and
Cu2+. A series of competitive titrations were performed to deter-
mine the limit at which Fe3+ and Cu2+ could be measured in the
presence of each other as competing ions. As already shown, Cu2+
was the only ion among those tested that was likely to cause po-
tential interference in the measurement of Fe3+ by receptor 4 and
vice versa. Therefore, we tested the ability of receptor 4 to operate
in solutions containing equimolar concentrations of Fe3+ and Cu2+
.
Figure 8A shows the plot for solutions containing receptor 4 + Fe3+
and those containing receptor 4 + Fe3+ + equimolar Cu2+; the two
sets of data appear to be in good agreement. This suggests that
Fe3+ binding induced changes in the fluorescence signals of recep-
tor 4, which are independent of the presence of Cu2+. The same
studies were repeated using Cu2+ as the analyte and Fe3+ as the
interfering ion (Fig. 8B). It was found that similar to Fe3+ estima-
tion, the changes induced by Cu2+ in the fluorescence signals of
5. (a) Tomat, E.; Lippard, S. J. Inorg. Chem. 2010, 49, 9113–9115; (b) Dong, M.;
Wang, Y.-W.; Peng, Y. Org. Lett. 2010, 12, 5310–5313; (c) Qu, Y.; Hua, J.; Tian, H.
Org. Lett. 2010, 12, 3320–3323; (d) Nandhikonda, P.; Heagy, M. D. Org. Lett.
2010, 12, 4796–4799; (e) Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Tetrahedron
2010, 66, 1678–1683; (f) Cheng, X.; Li, Q.; Qin, J.; Li, Z. ACS Appl. Mater.
Interfaces 2010, 2, 1066–1072.
6. Schmidtchen, F. P. Coord. Chem. Rev. 2006, 250, 2918–2928.
7. (a) Jung, H. J.; Singh, N.; Lee, D. Y.; Jang, D. O. Tetrahedron Lett. 2009, 50, 5555–
5558; (b) Singh, N.; Jang, D. O. Org. Lett. 2007, 9, 1991–1994; (c) Joo, T. Y.; Singh,
N.; Lee, G. W.; Jang, D. O. Tetrahedron Lett. 2007, 48, 8846–8850; (d) Moon, K. S.;
Singh, N.; Lee, G. W.; Jang, D. O. Tetrahedron 2007, 63, 9106–9111; (e) Jung, H.
J.; Singh, N.; Jang, D. O. Tetrahedron Lett. 2008, 49, 2960–2964.
8. Lee, D. Y.; Singh, N.; Jang, D. O. Tetrahedron Lett. 2010, 51, 1103–1106.
9. Lee, H. N.; Singh, N. J.; Kim, S. K.; Kwon, J. Y.; Kim, Y. Y.; Kim, K. S.; Yoon, J.
Tetrahedron Lett. 2007, 48, 169–172.
10. (a) Bhardwaj, V. K.; Pannu, A. P. S.; Singh, N.; Hundal, M. S.; Hundal, G.
Tetrahedron 2008, 64, 5384–5391; (b) Singh, N.; Hundal, M. S.; Hundal, G.;
Martinez-Ripoll, M. Tetrahedron 2005, 61, 7796–7806; (c) Nguyen, B. T.;
Wiskur, S. L.; Anslyn, E. V. Org. Lett. 2004, 6, 2499–2501; (d) Wisbur, S. L.;
Lavigne, J. J.; Ait-Haddon, H.; Lynch, V.; Chiu, Y. H.; Canam, J. W.; Anslyn, E. V.
Org. Lett. 2001, 3, 1311–1314; (e) Wiskur, S. L.; Ait-Haddon, H.; Lavingne, J. J.;
Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963–972.
receptor 4 were independent of the presence of Fe3+
.
In conclusion, we have prepared a 1,3,5-substituted triethyl-
benzene-based tripodal receptor with a benzimidazole moiety as
a binding and signalling subunit. The receptor was tested for a
number of metal ions and found to exhibit binding affinity for
Fe3+ and Cu2+. The response for both of these metal ions was un-
ique, and was independent of any tested metal ion. The receptor
was shown to be feasible for use in the simultaneous, selective,
and ratiometric determination of both metal ions.
Acknowledgement
11. Vacca, A.; Nativi, C.; Cacciarini, M.; Pergoli, R.; Roelens, S. J. Am. Chem. Soc.
2004, 126, 16456–16465.
12. Synthesis of compound 2: A solution of salicylaldehyde (111 mg, 0.91 mmol)
and KOH (59 mg, 1.02 mmol) in nPrOH (20 mL) was stirred vigorously at room
temperature. After 30 min 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene
(100 mg, 0.23 mmol) was added. The reaction mixture was heated to reflux
for 11 h. After evaporation of the solvent, the residue was dissolved in CH2Cl2
This work was supported by the National Research Foundation
(NRF) grant funded by the Korea government (MEST) through the
Center for Bioactive Molecular Hybrids (NO. R11-2003-019-
00000-0).
and then washed with water. Adding MeOH to the solution yielded
precipitated solid in 64% yield (83 mg): light brown solid; mp: 190–192 °C;
IR
max: 3477, 2967, 2873, 1687, 1598, 1484, 1228 cmÀ1 1H NMR (400 MHz,
a
Supplementary data
m
;
CDCl3): d 1.23 (t, 9H, –CH3, J = 7.6 Hz), 2.85 (q, 6H, –CH2, J = 7.6 Hz), 5.21 (s, 6H,
–CH2), 7.07–7.10 (m, 3H, Ar), 7.22–7.24 (m, 3H, Ar), 7.60–7.65 (m, 3H, Ar),
7.86–7.88 (m, 3H, Ar), 10.40 (s, 3H, –CHO); 13C NMR (100 MHz, CDCl3): d 16.8,
23.3, 65.0, 112.6, 121.4, 125.3, 128.7, 130.5, 136.3, 147.1, 161.3, 189.8; MS (ESI)
Supplementary data associated with this article can be found, in