1115, 919, 754, 731, 585; Anal calcd for C18H16O4Se: C 57.61, H
4.30. Found: C 57.02, H 4.10.
(b) R. Brigelius-Flohe´, Free Radical Biol. Med., 1999, 27, 951–965; (c) P.
Mauri, L. Bennazi, L. Flohe´, M. Maiorino, P. G. Pietta, S. Pilawa, A.
Roveri and F. Ursini, Biol. Chem., 2003, 384, 575–578; (d) O. Epp, R.
Ladenstein and A. Wendel, Eur. J. Biochem., 1983, 133, 51–69; (e) B.
Ren, W. Huang, B. Akesson and R. Ladenstein, J. Mol. Biol., 1997,
268, 869–885.
Synthesis of 27. 0.100 mL of 30% H2O2 was added to the
stirred solution of monoselenide 38 (0.12 g, 0.2 mmol) in 15 mL
of methanol. The reaction mixture was stirred for 3 h at room
temperature. The solvent was evaporated on a rotary evaporator
and the residue was recrystallized from ethyl acetate to give a
colorless solid. It was dissolved in CHCl3 (2.5 mL) in a 3 mL
sample vial and kept at room temperature for one week. The pale
yellow crystals obtained were washed with◦ether and dried under
vacuum. Yield 0.04 g (38%); m.p.: 259–261 C. 1HNMR (CDCl3):
d 8.50 (2H, s, Ar-H), 7.42–6.89 (15H, m, Ph–H), 1.53 (9H, s,
C(CH3)3). 13C NMR (CDCl3): d 162.8 (CO), 161.3, 139.9, 138.0,
134.8, 132.2, 130.2, 129.3, 127.7, 125.8, 125.7, 125.5, 125.2 (Ar and
Ph–C), 36.4 (C(CH3)3), 31.5 (C(CH3)3). FT-IR (KBr, cm-1): 1653
(CON), 1631, 1614, 1592, 1488, 1359, 869, 738, 690, 473. ES-MS:
m/z Calcd for C30H26N2O2Se: 526. Found: 527 [M+H]+(100%).
ES-HRMS: m/z calcd for C30H26N2O2Se: 526.12. Found: 527.12
[M+H]+ (100%). Anal. Calcd for C30H26N2O2Se: C 68.57, H 4.99,
N 5.33. Found: C 67.81, H 4.61, N 4.56.
10 For reviews on GPx mimetics, See: (a) G. Mugesh and H. B. Singh,
Chem. Soc. Rev., 2000, 29, 347–357; (b) G. Mugesh, W.-W. du Mont
and H. Sies, Chem. Rev., 2001, 101, 2125–2179; (c) G. Mugesh and
W.-W. du Mont, Chem.–Eur. J., 2001, 7, 1365–1370; (d) K. P. Bhabak
and G. Mugesh, Acc. Chem. Res., 2010, 43, 1408–1419.
11 T. G. Back, Z. Moussa and M. Parvez, Angew. Chem., Int. Ed., 2004,
43, 1268–1270.
12 T. G. Back, D. Kuzma and M. Parvez, J. Org. Chem., 2005, 70, 9230–
9236.
13 (a) T. G. Back and Z. Moussa, J. Am. Chem. Soc., 2002, 124, 12104–
12105; (b) T. G. Back and Z. Moussa, J. Am. Chem. Soc., 2003, 125,
13455–13460; (c) S. K. Tripathi, U. Patel, D. Roy, R. B. Sunoj, H. B.
Singh, G. Wolmersha¨user and R. J. Butcher, J. Org. Chem., 2005, 70,
9237–9247.
14 D. J. Press, E. A. Mercier, D. Kuzma and T. G. Back, J. Org. Chem.,
2008, 73, 4252–4255.
15 (a) L. J. Adzima, C. C. Chiang, I. C. Paul and J. C Martin, J. Am. Chem.
Soc., 1978, 100, 953–962; (b) D. Szabo´, M. Kuti, I. Kapovits, J. Ra´bai,
A. Kucsman, G. Argay, M. Czugler, A. Ka´lma´n and L. Pa´rka´nyi, J.
´
Mol. Struct., 1997, 415, 1–16; (c) T. Ada´m, F. Ruff, I. Kapovits, D.
Szabo´ and A. Kucsman, J. Chem. Soc., Perkin Trans., 1998, 2, 1269–
1275; (d) P. Nagy, A. Csa´mpai, D. Szabo´, J. Varga, V. Harmat, F. Ruff
and A. Kucsman, J. Chem. Soc., Perkin Trans. 2, 2001, 339–349.
16 D. Kuzma, M. Parvez and T. G. Back, Org. Biomol. Chem., 2007, 5,
3213–3217.
17 For ebselen and its calytic antioxidant profile, See: (a) A. Mu¨ller, E.
Cadenas, P. Graf and H. Sies, Biochem. Pharmacol., 1984, 33, 3235–
3239; (b) A. Wendel, M. Fausel, H. Safayhi, G. Tiegs and R. Otter,
Biochem. Pharmacol., 1984, 33, 3241–3245; (c) I. A. Cotgreave, R.
Morgenstern, L. Engman and J. Ahokas, Chem.-Biol. Interact., 1992,
84, 69–76; (d) R. Morgenstern, I. A. Cotgreave and L. Engman, Chem.-
Biol. Interact., 1992, 84, 77–84; (e) H. Sies, Free Radical Biol. Med.,
1993, 14, 313–323; (f) H. Sies and H. Masumoto, Adv. Pharmacol.,
1997, 38, 2229–2246; (g) B. K. Sarma and G. Mugesh, J. Am. Chem.
Soc., 2005, 127, 11477–11485.
Computational details
All calculations were performed using the Gaussian03 suite of
quantum chemical programs.40 The full geometry optimizations
were performed on suitably designed model systems 1, 24, 25a, 44
and 45 at the B3LYP/6-31g(d) level of theory and all geometries
were characterized by the frequency calculations. For tellurium
compound 44 LANL2DZ effective core potential (ECP) was
used.13c The Natural Bond Orbital (NBO)41 analysis for all the
systems was performed at B3LYP/6–311g+(d, p) level of theory
and for tellurium compound 44 LANL2DZ effective core potential
(ECP) was used.
18 B. K. Sarma, D. Manna, M. Minoura and G. Mugesh, J. Am. Chem.
Soc., 2010, 132, 5364–5374.
19 (a) S. S. Zade, H. B. Singh and R. J. Butcher, Angew. Chem., Int. Ed.,
2004, 43, 4513–4515; (b) S. S. Zade, S. Panda, S. K. Tripathi, H. B.
Singh and G. Wolmersha¨user, Eur. J. Org. Chem., 2004, 3857–3864;
(c) S. S. Zade, S. Panda, H. B. Singh, R. B. Sunoj and R. J. Butcher, J.
Org. Chem., 2005, 70, 3693–3704.
20 C. Lambert and L. E. Christiaens, Tetrahedron, 1991, 47, 9053–9060.
21 K. Selvakumar, H. B. Singh and R. J. Butcher, Chem.–Eur. J., 2010, 16,
10576–10591.
22 W. Walter, B. Krische and J. Voss, J. Chem. Research (S)., 1978, 332–
333; W. Walter, B. Krische and J. Voss, J. Chem. Research (M)., 1978,
4101–4137.
23 V. Jamier, L. A. Ba and C. Jacob, Chem.–Eur. J., 2010, 16, 10920–10928
and references therein.
24 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
25 A. Panda, S. C. Menon, H. B. Singh and R. J. Butcher, J. Organomet.
Chem., 2001, 623, 87–94.
26 (a) W. Nakanishi, S. Hayashi and N. Itoh, J. Org. Chem., 2004, 69,
1676–1684; (b) G. Mugesh, A. Panda, H. B. Singh and R. J. Butcher,
Chem.–Eur. J., 1999, 5, 1411–1421; (c) C. Bleiholder, D. B. Werz, H.
Ko¨ppel and R. Gleiter, J. Am. Chem. Soc., 2006, 128, 2666–2674 and
references therein.
27 S. Kumar, S. Panda, H. B. Singh, G. Wolmersha¨user and R. J. Butcher,
Struct. Chem., 2007, 18, 127–132.
28 B. Dahle´n, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,
1973, B29, 595–602.
Acknowledgements
HBS gratefully acknowledges the Department of Science and
Technology, New Delhi, for the Ramanna Fellowship. KS is
thankful to CSIR, New Delhi, for SRF and SAIF, IITB, for
spectral data collection.
References
1 (a) A. G. Petrovic, P. L. Polavarapu, J. Drabowicz, Y. Zhang, O. J.
McConnell and H. Duddeck, Chem.–Eur. J., 2005, 11, 4257–4262; (b) T.
Ga´ti, G. To´th, J. Drabowicz, S. Moeller, E. Hofer, P. L. Polavarapu and
H. Duddeck, Chirality, 2005, 17, S40–S47; (c) J. Drabowicz and G.
Halaba, Rev. Heteroatom Chem., 2000, 22, 1–32.
2 R. Lesser and R. Weiss, Ber. Dtsch. Chem. Ges., 1914, 47, 2510–2525.
3 B. Dahle´n and B. Lindgren, Acta Chem. Scand., 1973, 27, 2218–2220.
4 S. Claeson, V. Langer and S. Allenmark, Chirality, 2000, 12, 71–75.
5 J. Drabowicz, J. Łuczak, M. Mikolajczyk, Y. Yamamoto, S. Matsukawa
and K. –y. Akiba, Tetrahedron: Asymmetry, 2002, 13, 2079–2082.
6 L. B. Agena¨s and B. Lindgren, Acta Chem. Scand., 1970, 24, 3301–3308.
7 J. Zhang, S. Takahashi, S. Saito and T. Koizumi, Tetrahedron:
Asymmetry, 1998, 9, 3303–3317.
8 (a) T. Kawashima, R. Okazaki and F. Ohno, J. Am. Chem. Soc.,
1993, 115, 10434–10435; (b) F. Ohno, T. Kawashima and R. Okazaki,
Chem. Commun., 1997, 1671–1672; (c) F. Ohno, T. Kawashima and R.
Okazaki, Chem. Commun., 2001, 463–464.
9 For selenoenzyme GPx, See: (a) M. Maiorino, K.-D. Aumann, R.
Brigelius-Flohe´, D. Doria, J. van den Heuvel, J. McCarthy, A. Roveri,
F. Ursini and L. Flohe´, Biol. Chem. Hoppe-Seyler, 1995, 376, 651–660;
29 R. O. Day and R. R. Holmes, Inorg. Chem., 1981, 20, 3071–3075.
30 H. Fujihara, H. Mima and N. Furukawa, J. Am. Chem. Soc., 1995, 117,
10153–10154.
31 (a) M. Iwaoka, H. Komatsu, T. Katsuda and S. Tomoda, J. Am. Chem.
Soc., 2004, 126, 5309–5317; (b) D. Roy and R. B. Sunoj, J. Phys.
Chem. A, 2006, 110, 5942–5947; (c) B. K. Sharma and G. Mugesh,
ChemPhysChem, 2009, 10, 3013–3020.
9866 | Dalton Trans., 2011, 40, 9858–9867
This journal is
The Royal Society of Chemistry 2011
©