Synthesis of 6
Werner Foundation, and Sasol Ltd for financial support of this
work.
Method A: According to the procedure described for the synthesis
of complex 4.
Notes and references
Method B: Complex 5 (80 mg, 0.16 mmol) and NaOAc
(107 mg, 1.3 mmol) were stirred together in refluxing acetonitrile
(20 mL) for 6 days. Solid KI (224 mg, 1.6 mmol) was added and
the reaction mixture refluxed for 2 more days. The product was
purified by column chromatography (SiO2, CH2Cl2/acetone first
10 : 1, then 10 : 3) and 6 was obtained as a yellow solid (26 mg,
1 (a) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer and O.
Baudoin, Chem.–Eur. J., 2010, 16, 2654; (b) R. Giri, B.-F. Shi, K.
M. Engle, N. Maugel and J.-Q. Yu, Chem. Soc. Rev., 2009, 38,
3242.
2 M. S. Chen and M. C. White, Science, 2007, 318, 783.
3 (a) V. Vidal, A. Theolier, J. Thivolle-Cazat and J.-M. Basset, Science,
1997, 276, 99; (b) A. S. Goldman, A. H. Roy, Z. Huang, R. Ahuja, W.
Schinski and M. Brookhart, Science, 2006, 312, 257.
1
23% yield) after solvent removal. H NMR (CD3CN, 500 MHz,
343 K): d 7.15, 7.03 (2 ¥ s, 1H, Himi), 4.56 (br, 1H, RhCH),
4.35 (m, 4H, NCHHCHCHHN + NCHHCH2CH2CH3), 4.06
(m, 2H, NCHHCH2CH2CH3), 3.67 (m, 2H, NCHHCHCHHN),
4 (a) R. H. Crabtree, Chem. Rev., 1985, 85, 245; (b) A. E. Shilov and G.
B. Shul’pin, Russ. Chem. Rev., 1987, 56, 442; (c) B. A. Arndtsen and
R. G. Bergman, Science, 1995, 270, 1970; (d) J. Corker, F. Lefebvre,
C. Lecuyer, V. Dufaud, F. Quignard, A. Choplin, J. Evans and J.-M.
Basset, Science, 1996, 271, 966; (e) R. A. Periana, O. Mironov, D.
Taube, G. Bhalla and C. J. Jones, Science, 1998, 280, 560; (f) J. A.
Labinger and J. E. Bercaw, Nature, 2002, 417, 507; (g) A. S. Goldman
and K. I. Goldberg (ed.), Activation and Functionalization of C–H
Bonds, ACS Symposium Series 885, Wiley, Washington, D.C., 2004;
(h) R. H. Crabtree, J. Organomet. Chem., 2004, 689, 4083; (i) R. G.
Bergman, Nature, 2007, 446, 391; (j) J. F. Hartwig, Nature, 2008, 455,
314; (k) C. Coperet, Chem. Rev., 2010, 110, 656–680; (l) J. Choi, A.
MacArthur, M. Brookhart and A. S. Goldman, Chem. Rev., 2011, 111,
1761; For intramolecular processes, see e.g. ref. 1a and (m) D. Lapointe
and K. Fagnou, Chem. Lett., 2010, 39, 1118.
1.87, 1.79 (2 ¥ m, 2H, NCH2CH2CH2CH3), 1.40 (sextet, 4H,
3JHH = 7.4 Hz, NCH2CH2CH2CH3), 0.98 (t, 6H, JHH
=
3
7.3 Hz, NCH2CH2CH2CH3). 13C{ H} NMR (CD3CN, 125 MHz):
1
d
123.0, 122.9, 120.4, 120.2 (4 ¥ Cimi), 60.4, 60.1 (2 ¥
NCH2CHCH2N), 50.1, 49.8 (2 ¥ NCH2CH2CH2CH3), 36.0
(RhCH), 33.9, 33.3 (2 ¥ NCH2CH2CH2CH3), 20.6, 20.4 (2 ¥
NCH2CH2CH2CH3), 14.1 (NCH2CH2CH2CH3). Carbene carbon
signal not resolved. Anal. Calc. for C19H30I2N5Rh (685.19): C,
33.31; H, 4.41; N, 10.22. Found: C, 33.32; H, 4.14; N, 10.61%.
5 H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman,
A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen,
D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, D.
W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E.
Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L.
Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen, G.
A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas, Chem. Rev., 2001,
101, 953.
Structure determination and refinement of 3b, 4, 5b and 6
Suitable single crystals were mounted on Stoe Imaging Plate
Diffractometer Systems37 with a two-circle goniometer (3b and
4) or a one-circle j goniometer (5b), or on a Bruker SMART
APEX CCD diffractometer (6). Graphite-monochromators (Mo-
6 Z. Lin, Coord. Chem. Rev., 2007, 251, 2280.
7 R. N. Perutz and S. Sabo-Etienne, Angew. Chem., Int. Ed., 2007, 46,
2578.
˚
Ka radiation, l = 0.71073 A). For 3b and 4, a semi-empirical
absorption correction was applied using MULscanABS as imple-
mented in PLATON.38 An empirical absorption correction was
applied for 6 using the SADABS routine,39 and no absorption
correction was applied for 5b. The structures were solved by direct
methods using the program SHELXS-9740 and refined by full
matrix least squares on F2 with SHELXL-97. The hydrogen atoms
were included in calculated positions and treated as riding atoms
using SHELXL-97 default parameters. All non-hydrogen atoms
were refined anisotropically.
Crystals of complex 3b contained one half-occupied CH2Cl2 per
complex molecule. Disorder was found in one mesityl substituent
and in the PF6- anion, and more pronounced in the co-crystallised
solvent molecules. The SQUEEZE option in PLATON was
used to calculate the potential solvent accessible volume (1848
8 (a) A. Dedieu, Chem. Rev., 2000, 100, 543; (b) S. Sakaki, Top.
Organomet. Chem., 2005, 12, 31; (c) M. Lersch and M. Tilset, Chem.
Rev., 2005, 105, 2471.
9 (a) H. Chen, S. Schlecht, T. C. Semple and J. F. Hartwig, Science, 2000,
287, 1995; (b) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M.
Murphy and J. F. Hartwig, Chem. Rev., 2010, 110, 890.
10 In this context, electrophilic metals imply a larger charge transfer from
the C–H bond to the metal, whereas nucleophilic centres engage in
larger backbonding, i.e. charge transfer from the metal to the C–
H s* orbital. In amphiphilic centres bonding and backbonding are
nearly balanced. See: D. H. Ess, W. A. Goddard and R. A. Periana,
Organometallics, 2010, 29, 6459.
11 (a) Y. Boutadla, D. L. Davies, S. A. Macgregor and A. I. Poblador-
Bahamonde, Dalton Trans., 2009, 5820; (b) C. E. Kefalidis, O. Baudoin
and E. Clot, Dalton Trans., 2010, 39, 10528; (c) D. Balcells, E. Clot and
O. Eisenstein, Chem. Rev., 2010, 110, 749.
12 (a) D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand, Chem. Rev.,
2000, 100, 39; (b) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41,
1290; (c) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed., 2008,
47, 3122; (d) S. Diez-Gonzalez, N. Marion and S. P. Nolan, Chem. Rev.,
2009, 109, 3612; (e) L. Mercs and M. Albrecht, Chem. Soc. Rev., 2010,
39, 1903.
13 Intermolecular C–H bond activation: (a) M. Muehlhofer, T. Strassner
and W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1745; For
examples of intramolecular C–H bond activation, see: (b) J. Huang,
E. D. Stevens and S. P. Nolan, Organometallics, 2000, 19, 1194; (c) R.
Dorta, E. D. Stevens and S. P. Nolan, J. Am. Chem. Soc., 2004, 126,
5054; (d) S. Burling, B. M. Paine, D. Nama, V. S. Brown, M. F. Mahon,
T. J. Prior, P. S. Pregosin, M. K. Whittlesey and J. M. J. Williams, J.
Am. Chem. Soc., 2007, 129, 1987; (e) V. Lavallo and R. H. Grubbs,
Science, 2009, 326, 559; C–C bond activation: (f) R. F. R. Jazar, S. A.
Macgregor, M. F. Mahon, S. P. Richards and M. K. Whittlesey, J. Am.
Chem. Soc., 2002, 124, 4944; C–F bond activation: (g) V. P. W. Bo¨hm, C.
W. K. Gsto¨ttmayr, T. Weskamp and W. A. Herrmann, Angew. Chem.,
Int. Ed., 2001, 40, 3387.
˚
A, containing about 385 electrons). Eight hexane molecules
(8 ¥ 50 electrons) per unit cell were included in all further
calculations. Due to the disorder, the corresponding parts of the
ligand were refined as having the same thermal values. Compound
5b crystallised as a racemic twin, therefore the TWIN refinement
was applied in SHELXL. For 6, the absolute structure was
determined, the final Flack parameter is -0.03(3). Further details
on data collection and refinement are summarised in Table S1.†
Acknowledgements
We thank F. Fehr, Y. Ortin, and J. Muldoon, for analytical
assistance and the Swiss National Science Foundation, the Alfred
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 9911–9920 | 9919
©