Journal of the American Chemical Society
ARTICLE
’ ACKNOWLEDGMENT
(28) Bowman, A. C.; Bart, S. C.; Heinemann, F. W.; Meyer, K.;
Chirik, P. J. Inorg. Chem. 2009, 48, 5587.
We thank U.S. National Science Foundation and Deutsche
Forschungsgemeinschaft for a Cooperative Activities in Chem-
istry between U.S. and German Investigators grant. S.D. thanks
the Department of Chemistry and Chemical Biology at Cornell
University for financial support. SSRL operations are funded by
the Department of Energy, Office of Basic Energy Sciences. The
Structural Molecular Biology program is supported by the
National Institutes of Health, National Center for Research
Resources, Biomedical Technology Program and by the Depart-
ment of Energy, Office of Biological and Environmental Re-
search. We also thank Jon Darmon for preparation of the Table of
Contents graphic.
(29) Cowley, R. E.; Bill, E.; Neese, F.; Brennessel, W. W.; Holland,
P. L. Inorg. Chem. 2009, 48, 4828.
(30) Bowman, A. C. Ph. D. Thesis, Cornell University 2010.
(31) Knijnenburg, Q.; Hetterscheid, D.; Kooistra, T. M.; Budzelaar,
P. H. M. Eur. J. Inorg. Chem. 2004, 1204.
(32) Kahn, O. Molecular Magnetism; VCH: New York, 1993.
(33) Sorai, M.; Seki, S. J. Phys. Chem. Solids 1974, 35, 555.
(34) Long, G. J. M€ossbauer spectroscopy as a structural probe. In
M€ossbauer Spectroscopy; Dickson, D. P. E., Berry, F. J., Eds.; Cambridge
University Press: Cambridge, 1986; p 70.
(35) G€utlich, P. Spin crossover in iron(II)-complexes. In Metal
Complexes; Clarke, M. J., Hemmerich, P., Jørgensen, C. K., Reinen, D.,
Williams, R. J. P., Eds.; Springer-Verlag: Berlin, 1981; Vol. 44, p 83.
(36) G€utlich, P.; Goodwin, H. A. Spin Crossover À An Overall
Perspective. In Spin Crossover in Transition Metal Compounds I; G€utlich,
P., Goodwin, H. A., Eds.; Springer-Verlag: Berlin, 2004; Vol. 233; p 1.
(37) Ginsberg, A. P. J. Am. Chem. Soc. 1980, 102, 111.
(38) Noodleman, L.; Peng, C. Y.; Case, D. A.; Mouesca, J. M. Coord.
Chem. Rev. 1995, 144, 199.
’ REFERENCES
(1) Mehn, M. P.; Peters, J. C. Inorg. Biochem. 2006, 100, 634.
(2) Berry, J. F. Prog. Inorg. Chem. 2009, 30, 28.
(3) Verma, A. K.; Nazif, T. N.; Achim, C.; Lee, S. C. J. Am. Chem. Soc.
2000, 122, 11013.
(39) Kirchner, B.; Wennmohs, F.; Ye, S.; Neese, F. Curr. Opin. Chem.
Biol. 2007, 11, 134.
(4) Ni, C.; Fettinger, J. C.; Long, G. J.; Brynda, M.; Power, P. P.
Chem. Commun. 2008, 6045.
(40) Berry, J. F.; DeBeer George, S.; Neese, F. Phys. Chem. Chem.
Phys. 2008, 10, 4361.
(41) de Visser, S. P. J. Am. Chem. Soc. 2007, 129, 6168.
(42) Sinnecker, S.; Slep, L. D.; Bill, E.; Neese, F. Inorg. Chem. 2005,
44, 2245.
(43) R€omelt, M.; Ye, S.; Neese, F. Inorg. Chem. 2009, 48, 784.
(44) Ye, S. F.; Neese, F. Inorg. Chem. 2010, 49, 772.
(45) Ye, S. F.; Neese, F. J. Am. Chem. Soc. 2010, 132, 3646.
(46) (a) Rong, C.; Lian, S.; Yin, D.; Shen, B.; Zhong, A.; Liu, S.
J. Chem. Phys. 2006, 125, 174102. (b) Rong, C.; Lian, S.; Yin, D.; Zhong,
A.; Zhang, R.; Liu, S. Chem. Phys. Lett. 2007, 434, 149.
(47) Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 413–414.
(48) Bain, G. A.; Berry, J. F. J. Chem. Ed. 2008, 85, 532.
(49) George, G. N. EXAFSPAK, Stanford Synchrotron Radiation
Laboratory, Stanford Linear Accelerator Center, Stanford University:
Stanford, CA.
(50) Neese, F., Orca - an ab initio, DFT and Semiempirical Electro-
nic Structure Package, Version 2.8, Revision 2287; Institut f€ur Physika-
lische und Theoretische Chemie, Universit€at Bonn, Bonn (Germany),
November 2010.
(51) Becke, A. D. J. Chem. Phys. 1986, 84, 4524.
(52) Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800.
(53) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(5) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 1913.
(6) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322.
(7) Thomas, C. M.; Mankad, N. P.; Peters, J. C. J. Am. Chem. Soc.
2006, 128, 4956.
(8) Mankand, N. P.; M€uller, P.; Peters, J. C. J. Am. Chem. Soc. 2010,
132, 4083.
(9) Moret, M.-E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 2063.
(10) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 4538.
(11) Nieto, I.; Ding, F.; Bontchev, R. P.; Wang, H.; Smith, J. M. J. Am.
Chem. Soc. 2008, 130, 2716.
(12) Eckert, N. A.; Vaddadi, S.; Stoian, S.; Lachicotte, R. J.; Cundari,
T. R.; Holland, P. L. Angew. Chem., Int. Ed. 2006, 45, 6868.
(13) Cowley, R. E.; DeYonker, N. J.; Eckert, N. A.; Cundari, T. R.;
DeBeer, S.; Bill, E.; Ottenwaelder, X.; Flaschenriem, C.; Holland, P. L.
Inorg. Chem. 2010, 49, 6172.
(14) Cowley, R. E.; Holland, P. L. Inorg. Chim. Acta 2011, 369, 40.
(15) Cowley, R. E.; Eckert, N. A.; Vaddadi, S.; Figg, T. M.; Cundari,
T. R.; Holland, P. L. J. Am. Chem. Soc. 2011, 133, 9796.
€
(16) Cowley, R. E.; Elhaik, J.; Eckert, N. A.; Brennessel, W. W.; Bill,
E.; Holland, P. L. J. Am. Chem. Soc. 2008, 130, 6074.
€
(17) Cowley, R. E.; Eckert, N. A.; Elhaik, J.; Holland, P. L. Chem.
(54) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
Commun. 2009, 1760.
(55) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(56) The BP86 functional is a pure DFT functional, which includes
the generalized gradient approximation (GGA). Generally, this func-
tional has been shown to give good results for optimized geometries
at relatively low computational cost. Pure GGA-functionals, however,
suffer from difficulties in expressing the exchange part of the total energy,
which is particularly problematic for exchange-coupled systems as
presented in this work. Therefore, all electronic structure descriptions
and calculations of spectroscopic parameters presented in this work were
obtained from computations using the B3LYP functional. This hybrid
DFT functional includes a component of exact exchange energy cal-
culated by HartreeÀFock theory. For all geometry optimizations with
BP86 we carefully checked that the electronic structure obtained by this
functional was qualitatively identical to the B3LYP solution.
(57) Sch€afer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.
(58) Sch€afer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100,
5829.
(18) King, E. R.; Betley, T. A. Inorg. Chem. 2009, 48, 2361.
(19) King, E. R.; Hennessey, E. T.; Betley, T. A. J. Am. Chem. Soc.
2011, 133, 4917.
(20) Lu, C. C.; George, S. D.; Weyherm€uller, T.; Bill, E.; Bothe, E.;
Wieghardt, K. Angew. Chem., Int. Ed. 2008, 47, 6384.
(21) Lucas, R. L.; Powell, D. R.; Borovik, A. S. J. Am. Chem. Soc. 2005,
127, 11596.
(22) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004,
126, 13794.
(23) Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794.
(24) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.;
Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13901.
(25) Knijnenburg, Q.; Gambarotta, S.; Budzelaar, P. H. M. Dalton
Trans. 2006, 5442.
(26) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc.
2006, 128, 5302–5303.
(27) (a) Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science
1997, 275, 1445. (b) Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Nature 2004,
427, 527. (c) Pool, J. A.; Bernskoetter, W. H.; Chirik, P. J. J. Am. Chem.
Soc. 2004, 126, 14326. (d) Bernskoetter, W. H.; Lobkovsky, E.; Chirik,
P. J. J. Am. Chem. Soc. 2005, 127, 14051.
(59) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7,
3297.
(60) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theory
Chem. Acc. 1997, 97, 119.
17368
dx.doi.org/10.1021/ja205736m |J. Am. Chem. Soc. 2011, 133, 17353–17369