V. Pandya et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5701–5706
5705
higher potency (IC50 = 2.4
translocation of m-CF3 group of 6e (IC50 = 2.4
was found to be detrimental in terms of potency as witnessed from
IC50 value of 6f, (IC50 = 22 M). The removal of CF3 group from 6c to
l
M) compared to 6c (IC50 = 3.2
lM). The
Acknowledgments
l
M) at para position
We are grateful to the management of Zydus Group for encour-
agement and analytical department for their support.
l
get the compound 6g resulted in the deterioration of the PAI-1 inhi-
bition (Table 2), which further supported the importance of the of
the CF3 group. The compounds with potent PAI-1 inhibitory activity,
5a, 6c, and 6e were evaluated for their pharmacokinetic parameters
in rats (Table 3).
References and notes
1. Yepes, M.; Loskutoff, D. F.; Lawrence, D. A. Hemostasis Thrombosis: Basic
Principles Clinical Practice In Coleman, R. W., Marder, V. J., Clowes, A. W.,
George, J. N., Goldhaber, S. Z., Eds.; Lippincott Williams & Wilkins: Baltimore,
2006; pp 365–380.
The compound 5a showed good plasma levels (Cmax = 2.4 lg/
2. Schleef, R. R.; Higgins, D. L.; Pillemer, E.; Levitt, L. J. J. Clin. Invest. 1989, 83, 1747.
3. Dieval, J.; Nguyen, G.; Gross, S.; Delobel, J.; Kruithof, E. K. Blood 1991, 77, 528.
4. Lee, M. H.; Vosburgh, E.; Anderson, K.; McDonagh, J. Blood 1993, 81, 2357.
5. Andreasen, P. A. Curr. Drug Targets 2007, 8, 1030.
6. Huang, Y.; Border, W. A.; Yu, L.; Zhang, J.; Lawrence, D. A.; Noble, N. A. J. Am. Soc.
Nephrol. 2008, 19, 329.
7. Shah, C.; Yang, G.; Lee, I.; Bielawski, J.; Hannun, Y. A.; Samad, F. J. Biol. Chem.
2008, 283, 13538.
8. Lijnen, H. R. Thromb. Res. 2009, 123, S46.
9. Gohil, R.; Peck, G.; Sharma, P. Thromb. Haemost. 2009, 102, 360.
10. Wiman, B.; Andersson, T.; Hallqvist, J.; Reuterwall, C.; Ahlbom, A.; deFaire, U.
Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2019.
11. Sobel, B. E.; Taatjes, D. J.; Schneider, D. J. Arterioscler. Thromb. Vasc. Biol. 2003,
23, 1979.
mL) and a half life (T1/2 = 3.27 h) when dosed orally at 30 mg/kg
in wistar rats (Table 3). The compound 6c showed impressive plas-
ma levels (Cmax = 6.8 lg/mL) and a long (T1/2 = 9.86 h), which is
favorable for this class of compounds. However, plasma concentra-
tion of the methoxy derivative 6e was found to be modest when
compared to 6c. The significant plasma concentration and long half
life of the compounds 5a, 6c, and 6e prompted us to study the com-
pounds for their in vivo efficacy in rats using FeCl3 induced arterial
thrombosis model using Clopidogrel, a well known antiplatelet
agent as a positive control.34 However, compound 6c exhibited
moderate antithrombotic efficacy while compounds 5a and 6e
failed to show any in vivo efficacy, inspite of their impressive
in vitro PAI-1 inhibitory activity and favorable pharmacokinetic
parameters (Fig. 4). The further optimization efforts for this class
of compounds to get the appropriate pharamacodynamics and
pharmacokinetics correlation are in progress.
In summary, the novel 5-nitro-2-phenoxybenzoic acid deriva-
tives derived using hybridization and conformational restriction
strategies display potent PAI-1 inhibitory activity and favorable
pharmacokinetic parameters. Oxoacetic acid part of Tiplaxtinin 1
has been effectively replaced with 5-nitro-2-phenoxybenzoic acid
part of 2 producing potent PAI inhibitor 5a. The docking study con-
firmed the similar orientation of 5a and tiplaxtinin in PAI-1 ligand
binding site. Conformational restriction of 2 with indole as a cen-
tral core (6c) showed potent PAI-1 inhibitory activity and excellent
pharmacokinetic profile with moderate efficacy in rats using FeCl3
induced arterial thrombosis model. These findings provided the
impetus for further studies on the refinement of these templates
which will be reported in due course.
12. Brown, N. J. Ther Adv Cardiovasc Dis. 2010, 4(5), 315.
13. Izuhara, Y.; Takahashi, S.; Nangaku, M.; Takizawa, S.; Ishida, H.; Kurokawa, K.;
Charles van Ypersele de Strihou, C.; Hirayama, N.; Miyata, T. Arterioscler.
Thromb. Vasc. Biol. 2008, 28, 672.
14. Elokdah, H.; Abou-Gharbia, M.; Hennan, J. K.; McFarlane, G.; Mugford, C. P.;
Krishnamurthy, G.; Crandall, D. L. J. Med. Chem. 2004, 47, 3491.
15. Ye, B.; Chou, Y. L.; Karanjawala, R.; Lee, W.; Lu, S. F.; Shaw, K. J.; Jones, S.; Lentz,
D.; Liang, A.; Tseng, J. L.; Wu, Q.; Zhao, Z. Bioorg. Med. Chem. Lett. 2004, 14, 761.
16. El-Ayache, N. C.; Li, Shih-Hon; Warnock, M.; Lawrence, D. A.; Emal, C. D. Bioorg.
Med. Chem. Lett. 2010, 20, 966.
17. Folkes, A.; Roe, M. B.; Sohal, S.; Golec, J.; Faint, R.; Brooks, T.; Charlton, P. Bioorg.
Med. Chem. Lett. 2001, 11, 2589.
18. Gils, A.; Stassen, J. M.; Nar, H.; Kley, J. T.; Wienen, W.; Ries, U. J.; Declerck, P. J.
Thromb. Haemost. 2002, 88, 137.
19. Einholm, A. P.; Pedersen, K. E.; Wind, T.; Kulig, P.; Overgaard, M. T.; Jensen, J. K.;
Bodker, J. S.; Christensen, A.; Charlton, P.; Andreasen, P. A. Biochem. J. 2003, 373,
723.
20. Crandall, D. L.; Elokdah, H.; Di, L.; Hennan, J. K.; Gorlatova, N. V.; Lawrence, D.
A. J. Thromb. Haemost. 2004, 2, 1422.
21. Liang, A.; Wu, F.; Tran, K.; Jones, S. W.; Deng, G.; Ye, B.; Zhao, Z.; Snider, R. M.;
Dole, W. P.; Morser, J.; Wu, Q. Thromb. Res. 2005, 115, 341.
22. Gorlatova, N. V.; Cale, J. M.; Elokdah, H.; Li, D.; Fan, K.; Warnock, M.; Crandall,
D. L.; Lawrence, D. A. J. Biol. Chem. 2007, 282, 9288.
23. Gardell, S. J.; Krueger, J. A.; Antrilli, T. A.; Elokdah, H.; Mayer, S.; Orcutt, S. J.;
Crandall, D. L.; Vlasuk, G. P. Mol. Pharmacol. 2007, 72, 897.
24. Rupin, A.; Gaertner, R.; Mennecier, P.; Richard, I.; Benoist, A.; De Nanteuil, G.;
Verbeuren, T. J. Thromb. Res. 2008, 122, 265.
25. Izuhara, Y.; Takahashi, S.; Nangaku, M.; Takizawa, S.; Ishida, H.; Kurokawa, K.;
de Strihou, C.; Hirayama, N.; Miyata, T. Arterioscler. Thromb. Vasc. Biol. 2008, 28,
672.
26. Lucking, A. J.; Visvanathan, A.; Philippou, H.; Fraser, S.; Grant, P. J.; Connolly, T.
M.; Gardell, S. J.; Feuerstein, G. Z.; Fox, K. A.; Booth, N. A.; Newby, D. E. J.
Thromb. Haemost. 2010, 8, 1333.
60
*
Cut off time
50
40
30
20
10
0
27. Jain, M. R.; Shetty, S.; Chakrabarti, G.; Pandya, V.; Sharma, A.; Parmar, B.;
Srivastava, S.; Raviya, M.; Soni, H.; Patel, P. R. Eur. J. Med. Chem. 2008, 43, 880.
28. Protocol for docking study: (a) X-ray crystal structure of PAI-1 (PDB code: 3Q03)
was obtained from PDB database. Protein crystal structure of PAI-1 was
prepared using the Schrödinger’s protein preparation wizard module. The
binding site of the protein structure was identified using the sitemap module
of the Schrödinger software. The probable site according to the literature was
used as the centroid to generate the grid files for the docking. Docking study
was carried out by using the induced fit docking; (b) Schrödinger Suite 2010
Induced Fit Docking protocol; Glide version 5.6, Schrödinger, LLC, New York,
NY, 2010; Prime version 2.2, Schrödinger, LLC, New York, NY, 2010; (c) Docking
study of Tiplaxtinin using the Glide software in PAI-1 protein crystal structure
(PDB code: 1B3K) obtained from PDB did not gave a reported binding mode,22
hence PAI-1 crystal structure recently reported by Jensen et al. was used for
docking study of compounds along with tiplaxtinin; (d) Jensen, J. K.;
Thompson, L. C.; Bucci, J. C.; Nissen, P.; Gettins, P. G. W.; Peterson, C. B.;
Andreason, P. A.; Morth, J. P. J. Biol. Chem. 2011, in press. doi:10.1074/
*
29. Pharmacokinetic study: Compounds were formulated with
a
Tween-
80:PEG:CMC (5:5:90% v/v), A graduated dose volume (5 ml/kg) of suspension
was administered to fasted male Wistar rats at 30 mg/kg po. The animals were
anesthetized for blood sample collection from retro-orbital plexus. Serial blood
samples were collected into heparinised containers at various time points and
blood centrifuged to yield plasma. Plasma concentration was determined by
using LC–MS/MS method.
Figure 4. Effects of the compound 5a and 6c and 6e on time to thrombus formation
in FeCl3-induced arterial thrombosis in rats at 30 mpk. Each value represents
mean SEM (n = 6). ⁄ indicates p < 0.05 versus vehicle control. Clopidogrel was used
as positive control and administered orally 2 h before application of FeCl3 paper on
the carotid artery.
30. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.