Inorganic Chemistry
ARTICLE
1
formed, and these were characterized by H NMR spectroscopy as
’ ACKNOWLEDGMENT
[K(18-crown-6)SiH3 HSiPh3] (1b), in which the SiH3ꢀ and HSiPH3
3
We are grateful to the EPSRC (U.K.) and NSERC (Canada)
for financial support of this research.
ligands were produced through a ligand redistribution reaction involving
PhSiH3. The 1H NMR spectra also revealed the presence of comparable
amounts of the hypervalent product [K(18-crown-6)Ph3SiH2] (see
Supporting Information).11
1H NMR δ(THF-d8): 1b f 1.2 (s, 1J(29Siꢀ H) = 73.5 Hz, 3H), 3.5
1
’ REFERENCES
(s), 5.4 (s, J(29Siꢀ H) = 200 Hz,), 7.4 (m), 7.7 (m); [K(18-crown-
1
1
(1) Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570.
(2) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th
ed.; HarperCollins: New York, 1993.
6)Ph3SiH2] f 3.14 (s), 5.81 (s, 1J(29Siꢀ H) = 131 Hz,), 6.8ꢀ6.9 (m),
1
7.98 (d). 13C NMR δ (THF-d8): 1b f 70.48 (s, CH2). 29Si NMR
δ(THF-d8): ꢀ170.3 (q, 1J(29Siꢀ H) = 73.5 Hz; [K(18-crown-
1
(3) Ring, M. A.; Ritter, D. M. J. Phys. Chem. 1961, 65, 182.
(4) Weiss, E.; Hencken, G.; Kuehr, H. Chem. Ber. 1970, 103, 2868.
(5) Klinkhammer, K. W. Chem.—Eur. J. 1997, 3, 1418.
(6) Pritzkow, H.; Lobreyer, T.; Sundermeyer, W.; Hommes, N.J.R.v.
E.; Schleyer, P.v.R. Angew. Chem., Int. Ed. Engl. 1994, 33, 216.
(7) Schleyer, P.v.R.; Clark, T. J. Am. Chem. Soc. 1986, 17, 1371.
(8) Gꢀomez, P. C.; Palafox, M. A.; Pacios, L. F. J. Phys. Chem. A 1999,
103, 8537.
(9) Pacios, L. F.; Gꢀalvez, O.; Gꢀomez, P. C. J. Phys. Chem. A 2000,
104, 7617.
(10) Prince, P. D. Structural Aspects of some Group 14 Hydrides and
Halides. Ph.D. Thesis, University of London, London, United Kingdom,
2003
(11) Flock, M.; Marschner, C. Chem.—Eur. J. 2002, 8, 1024.
(12) Bearpark, M. J.; McGrady, G. S.; Prince, P. D.; Steed, J. W.
J. Am. Chem. Soc. 2001, 123, 7736.
(13) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford
University Press: New York, 1990.
(14) Sirsch, P.; Clark, N. L. N.; Onut, L.; Burchell, R. P. L.; Decken,
A.; McGrady, G. S.; Daoud-Aladine, A.; Gutmann, M. J. Inorg. Chem.
2010, 49, 11395.
6)Ph3SiH2] f 68.48 (CH2), 123.79 (meta), 124.31 (ortho), 135.25
(para), 156.24 (ipso). 29Si{1H} NMR δ(THF-d8): 1b f ꢀ170.3 (s);
[K(18-crown-6)Ph3SiH2] f ꢀ73.99 (t, 1J(29Siꢀ H) = 131 Hz).
1
Crystal Data for 1b at 115(2) K (CCDC = 821708). Mr = 594.92, with
MoKα radiation (0.71073 Å); rhombohedral space group R3m (no. 160),
a = b = c = 9.4687(10) Å, α = β = γ = 98.201(10), V = 820.06(15) Å3, Z =
1, 2θmax = 55.0°, 1303unique reflections[Rint = 0.0540], μ =0.273mmꢀ1
,
GOF = 1.093, R1 (I > 2σ) = 0.0378, wR2 (all data) = 0.0935, Flack
parameter = 0.31(7), largest diff. peak and hole 0.408 and ꢀ0.562 e Åꢀ3
.
’ COMPUTATIONAL DETAILS
Geometry optimizations were performed at the (DFT)ꢀB3LYP/6-
311++G(d,p) level of approximation using the Gaussian09 software
suite.26 C3v symmetry was imposed for KSiH3 2, while calculation on
[K(18-crown-6)SiH3] 1 involved no such constraints. Frequency calcu-
lations confirmed that the structures thus obtained were stable minima
on their potential energy surfaces, with the exception of the tet conformer
of 1, which displayed a low imaginary frequencyassociated withthetilting
(15) Wolstenholme, D. J.; Sirsch, P.; Onut, L.; Flogeras, J.; Decken,
A.; McGrady, G. S. Dalton Trans. 2011, 40, 8301.
(16) Crabtree, R. H.; Siegbhan, P. E. M.; Eisenstein, O.; Rheingold,
A. L.; Koetzle, T. F. Acc. Chem. Res. 1996, 29, 348.
(17) Campbell, J. P.; Hwang, J.-W.; Young, V. G.; von Dreele, R. B.;
Cramer, C. J.; Gladfelter, W. L. J. Am. Chem. Soc. 1998, 120, 521.
(18) Aldridge, S.; Downs, A. J.; Tang, C. Y.; Parsons, S.; Clarke,
M. C.; Johnstone, R. D. L.; Robertson, H. E.; Rankin, D. W. H.; Wann,
D. A. J. Am. Chem. Soc. 2009, 131, 2231.
(19) (a) Bondi, A. J. Phys. Chem. 1964, 68, 441. (b) Nyburg, S. C.;
Faerman, C. H. Acta Crystallogr., Sect. B 1985, 41, 274.
(20) Lang, P. F.; Smith, B. C. Dalton Trans. 2010, 39, 7786.
(21) Wolstenholme, D. J.; Titah, J. T.; Che, F. N.; Traboulsee, K. T.;
Flogeras, J.; McGrady, G. S. J. Am. Chem. Soc. 2011, DOI: 10.1021/
ja206357a.
of the SiꢀH bond involved in the inter-ion SiꢀH HꢀC interactions.
3 3 3
The final optimized geometries were then used to obtain wave functions
for each system. The topological analysis of the electron distributions
and atomic properties were carried out using a combination of the
AIM2000 and AIMALL software packages.27,28
The reliability of these calculations was determined through a
comparison of the energies, geometries, and electron distributions for
tet and inv structures of 2 at various levels of approximation (see
Supporting Information). The B3LYP/6-311++(d,p) calculations were
found to provide reasonable values relative to higher level MP2 and
CCSD calculations, with the exception of the overall energy difference
between the two conformations. However, the calculations consistently
converged on the same orientation of the [SiH3]ꢀ anion, irrespective of
changes in the functional or basis set. Accordingly, all values reported
here refer to the B3LYP/6-311++(d,p) calculations (see Supporting
Information for details concerning the MP2 and CCSD calculations).
(22) (a) Matta, C. F.; Hernꢀandez-Trujillo, J.; Tang, T.-H.; Bader,
R. F. W. Chem.—Eur. J. 2003, 9, 1940. (b) Wolstenholme, D. J.; Cameron,
T. S. J. Phys. Chem. A 2006, 110, 8970. (c) Wolstenholme, D. J.; Matta,
C. F.;Cameron, T. S. J. Phys. Chem. A 2007, 111, 8803. (d) Wolstenholme,
D. J.; Cameron, T. S. Can. J. Chem. 2007, 85, 576.
’ ASSOCIATED CONTENT
(23) Fradera, X.; Austen, M. A.; Bader, R. F. W. J. Phys. Chem. A
1999, 103, 304.
S
Supporting Information. Details concerning the ener-
b
gies, geometries, and topologies for the B3LYP, MP2, and CCSD
calculations at 6-311G(d,p), 6-311++G(d,p), and 6-311++G-
(3df,pd) level of approximations. We also present the B3LYP/6-
311++G(d,p) geometries for the [K(18-crown-6)SiH3] and the
experimental geometries for the intermolecular interactions
present in [K(18-crown-6)SiH3 THF] and [K(18-crown-6)-
SiH3 HSiPh3]. This material is available free of charge via the
(24) Pearson, R. G. Chemical Hardness; John Wiley-VCH:Weinheim,
Germany, 1997.
(25) Pearson, R. G. J. Chem. Sci. 2005, 117, 269.
(26) Frisch, M. J. et al. Gaussian 09, Revision A.02; Gaussian, Inc.:
Wallingford, CT, 2009.
(27) (a) Biegler-K€onig, F. W.; Sch€onbohm, J. J. Comput. Chem.
2000, 21, 1040. (b) Biegler-K€onig, F. W.; Sch€onbohm, J. J. Comput.
Chem. 2002, 15, 1489.
(28) Keith, T. A. AIMALL, version 09.04.23; Gristmill Software:
Overland Park, KS, 2009.
3
3
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: dwolsten@unb.ca (D.J.W.), smcgrady@unb.ca (G.S.M.),
jon.steed@durham.ac.uk (J.W.S.).
11227
dx.doi.org/10.1021/ic201774x |Inorg. Chem. 2011, 50, 11222–11227