Page 5 of 6
Journal of the American Chemical Society
(9) (a) Fumagalli, G.; Stanton, S.; Bower, J. F. Recent Methodologies
Studies of Glun2b-Selective NMDA Receptor Antagonists with a
That Exploit C–C Single-Bond Cleavage of Strained Ring Systems by
Transition Metal Complexes. Chem. Rev. 2017, 117, 9404–9432. (b)
Chen, P.; Billett, B.; Tsukamoto, T.; Dong, G. “Cut and Sew”
Transformations via Transition-metal-catalyzed Carbon–Carbon Bond
Activation. ACS Catal. 2017, 7, 1340–1360.
(10) (a) Murakami, M.; Amii, H.; Ito, Y. Selective Activation of
Carbon−Carbon Bonds next to a Carbonyl Group. Nature 1994, 370,
540−541. (b) Jun, C.-H.; Lee, H. Catalytic Carbon−Carbon Bond
Activation of Unstrained Ketone by Soluble Transition-Metal Complex. J.
Am. Chem. Soc. 1999, 121, 880−881. (c) Chen, F.; Wang, T.; Jiao, N.
Recent Advances in Transition-metal-catalyzed Functionalization of
Unstrained Carbon–Carbon Bonds. Chem. Rev. 2014, 114, 8613–8661. (d)
Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Catalytic Activations of
Unstrained C–C Bond Involving Organometallic Intermediates. Chem.
Soc. Rev. 2018, 47, 7078–97115.
Benzo[7]annulen-7-amine Scaffold. ChemMedChem 2017, 12,
1212−1222.
(21) Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.;
Salomon, E.; Tarnus, C.; Weibel, J.-M. Amino-benzosuberone: A Novel
Warhead for Selective Inhibition of Human Aminopeptidase-N/CD13.
Bioorg. Med. Chem. 2011, 19, 1434–1449.
(22) Use of non-ethylene olefins or saturated cyclopentanones is
challenging at this initial stage, likely due to a slow migratory insertion
step.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) For examples on two-carbon ring expansion via transition metal-
catalyzed C−C activation of highly strained ketones with activated olefins
or alkynes, see: (a) Kondo, T.; Nakamura, A.; Okada, T.; Suzuki, N.;
Wada, K.; Mitsudo, T.-a. Ruthenium-catalyzed Reconstructive Synthesis
of Cyclopentenones by Unusual Coupling of Cyclobutenediones with
Alkenes Involving Carbon−Carbon Bond Cleavage. J. Am. Chem. Soc.
2000, 122, 6319−6320. (b) Kondo, T.; Taguchi, Y.; Kaneko, Y.; Niimi,
M.; Mitsudo, T.-a. Ru- and Rh-catalyzed C−C Bond Cleavage of
Cyclobutenones: Reconstructive and Selective Synthesis of 2-Pyranones,
Cyclopentenes, and Cyclohexanones. Angew. Chem. Int. Ed. 2004, 43,
5369−5372. (c) Kondo, T.; Niimi, M.; Nomura, M.; Wada, K.; Mitsudo,
T.-a. Rhodium-catalyzed Rapid Synthesis of Substituted Phenols from
Cyclobutenones and Alkynes or Alkenes via C–C Bond Cleavage.
Tetrahedron Lett. 2007, 48, 2837−2839. (d) Juliá-Hernández, F.; Ziadi,
A.; Nishimura, A.; Martin, R. Nickel-catalyzed Chemo-, Regio- and
Diastereoselective Bond Formation through Proximal C−C Cleavage of
Benzocyclobutenones. Angew. Chem. Int. Ed. 2015, 54, 9537−9541.
(12) Tobisu, M.; Chatani, N. Catalytic Reactions Involving the Cleavage
of Carbon–Cyano and Carbon–Carbon Triple Bonds. Chem. Soc. Rev.
2008, 37, 300–307.
(13) Though not ring expansion reactions, some related examples are:
(a) Dreis, A. M.; Douglas, C. J. Catalytic Carbon−Carbon σ Bond
Activation: An Intramolecular Carbo-acylation Reaction with
Acylquinolines. J. Am. Chem. Soc. 2009, 131, 412−413. (b) Wentzel, M.ꢀ
T.; Reddy, V.ꢀJ.; Hyster, T.ꢀK.; Douglas, C.ꢀJ. Chemoselectivity in
Catalytic C−C and C−H Bond Activation: Controlling Intermolecular
Carboacylation and Hydroarylation of Alkenes. Angew. Chem. Int. Ed.
2009, 48, 6121−6123. (c) Rong, Z.-Q.; Lim, H. N.; Dong, G.
Intramolecular Acetyl Transfer to Olefins via Catalytic C−C Bond
Activation of Unstrained Ketones. Angew. Chem. Int. Ed. 2018, 57,
475−479.
(14) (a) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-
Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through
Dual Photoexcitation. J. Am. Chem. Soc. 2018, 140, 13580−13585. (b)
Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.;
Cheng, P. T. W.; Knowles, R. R. Catalytic Ring Expansions of Cyclic
Alcohols Enabled by Proton-Coupled Electron Transfer. J. Am. Chem.
Soc. 2019, 141, 8752−8757.
(15) Mo, F.; Dong, G. Regioselective Ketone α-Alkylation with Simple
Olefins via Dual Activation. Science 2014, 345, 68–72.
(16) Itooka, R.; Iguchi, Y.; Miyaura, N. Rhodium-catalyzed 1,4-
Addition of Arylboronic Acids to α, β-Unsaturated Carbonyl Compounds:
Large Accelerating Effects of Bases and Ligands. J. Org. Chem. 2003, 68,
6000–6004.
(17) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Catalytic Activation of Carbon-
Carbon Bonds in Cyclopentanones. Nature 2016, 539, 546–550.
(18) Boussard, M.-F.; Guette, J. P.; Wierzbicki, M.; Beal, P.; Fournier,
J.; Boulanger, M.; Della-Zuanad, O.; Duhault, J. Preparation and
Pharmacological Profile of 2-Trifluoromethyl-benzo(8,9)-1,3-diaza-
spiro(4,6)-undeca-2,8-diene and Its Enantiomers As New Anti-obesity
Agents. Arzneim.-Forsch./Drug Res. 2000, 50, 1084–1092.
(19) Gingrich, D. E; Lisko, J. G.; Curry, M. A.; Cheng, M.; Quail, M.;
Lu, L.; Wan, W.; Albom, M. S.; Angeles, T. S.; Aimone, L. D.; Curtis
Haltiwanger, R.; Wells-Knecht, K.; Ott, G. R.; Ghose, A. K.; Ator, M. A.;
Ruggeri, B.; Dorsey, B. D. Discovery of an Orally Efficacious Inhibitor of
Anaplastic Lymphoma Kinase. J. Med. Chem. 2012, 55, 4580−4593.
(20) Gawaskar, S.; Temme, L.; Schreiber, J. A.; Schepmann, D.;
Bonifazi, A.; Robaa, D.; Sippl, W.; Strutz-Seebohm, N.; Seebohm, G.;
Wünsch, B. Design, Synthesis, Pharmacological Evaluation and Docking
ACS Paragon Plus Environment