5674
J. Calzavara, J. McNulty / Tetrahedron Letters 52 (2011) 5672–5675
NH2
Acknowledgments
HO
HO
We thank NSERC for the financial support of this work and Mr.
D. McLeod for valuable contributions.
FTY720
Supplementary data
Boc
NH
Supplementary data associated with this article can be found, in
O
O
Ph
9
References and notes
1. Mandala, S.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie, J.; Milligan, J.;
Thornton, R.; Shei, G.-J.; Card, D.; Keohane, C.; Rosenbach, M.; Hale, J.; Lynch, C.
L.; Rupprecht, K.; Parsons, W.; Rosen, H. Science 2002, 296, 346–349.
2. Fujita, T.; Matsumoto, N.; Uchida, S.; Kohno, T.; Shimizu, T.; Hirose, R.; Yanada,
K.; Kurio, W.; Watabe, K. Bioorg. Med. Chem. Lett. 2000, 10, 337–339.
3. (a) Brinkmann, V.; Davis, M. D.; Heise, C. E. J Biol Chem. 2002, 277, 21453–
21457; (b) Suzuki, S. Transplant. Proc. 1999, 31, 2779–2782.
O
Br
P(iBu)3
HN
O
O
O
5
5
O
4
4. Pyne, S.; Pyne, N. J. Biochem. J. 2000, 349, 385–402.
5. Evindar, G.; Satz, A. L.; Bernier, S. G.; Kavarana, M. J.; Doyle, E.; Lorusso, J.;
Taghizadeh, N.; Halley, K.; Hutchings, A.; Kelley, M. S.; Wright, A. D.; Saha, A. K.;
Hannig, G.; Morgan, B. A.; Westlin, W. F. Bioorg. Med. Chem. Lett. 2009, 19,
2315–2319.
6. Albert, R.; Hinterding, K.; Brinkmann, V.; Guerini, D.; Müller-Hartwieg, C.;
Knecht, H.; Simeon, C.; Streiff, M.; Wagner, T.; Welzenbach, K.; Zécri, F.;
Zollinger, M.; Cooke, N.; Francotte, E. J. Med. Chem. 2005, 48, 5373–5377.
7. Balasubramaniam, S.; Annamalai, S.; Aidhen, I. Synlett 2007, 2841–2846.
8. Fyrst, H.; Saba, J. D. Nature Chem. Biol. 2010, 6, 489–497.
NH2
OH
OH
TRIS
OH
O
HO
6
Figure 2. Retrosynthetic analysis of FTY720.
9. (a) Brinkmann, V. Br. J. Pharmacol. 2009, 158, 1173–1182; (b) Kappos, L.; Radue,
E. W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.;
Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; Burtin, P. N. Engl. J. Med.
2010, 362, 387–401; (c) Cohen, J. A.; Barkhof, F.; Comi, G.; Hartung, H. P.;
Khatri, B. O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; Tiel-
Wilck, K.; De Vera, A.; Jin, J.; Stites, T.; Wu, S.; Aradhye, S.; Kappos, L. N. Engl. J.
Med. 2010, 362, 402–415; (d) Choi, J. W.; Gardell, S. E.; Herr, D. R.; Rivera, R.;
Lee, C. W.; Noguchi, K.; Teo, S. T.; Yung, Y. C.; Lu, M.; Kennedy, G.; Chun, J. Proc.
Natl. Acad. Sci. 2011, 108, 751–756; (e) Brinkmann, V.; Billich, A.; Baumruker, T.;
Heining, P.; Schmouder, R.; Francis, G.; Arahye, S.; Burtin, P. Nat. Rev. Drug Disc.
2010, 9, 883–897; (f) Strader, C. R.; Pearce, C. J.; Oberlies, N. H. J. Nat. Prod. 2011,
74, 900–907.
10. Pchejetski, D.; Bohler, T.; Brizuela, L.; Sauer, L.; Doumerc, N.; Golzio, M.;
Salunkhe, V.; Teissie, J.; Malavaud, B.; Waxman, J.; Cuvillier, O. Am. Assoc.
Cancer Res. 2010, 9, 8651–8661.
11. Tonelli, F.; Lim, K. G.; Loveridge, C.; Long, J.; Pitson, S. M.; Tigyi, G.; Bittman, R.;
Pyne, S.; Pyne, N. J. Cell. Signalling 2010, 22, 1536–1542.
was hydrogenated over Pd/C to give the doubly reduced product 10
as the cis/trans isomers only. Hydrolysis of the benzylidene acetal
and removal of the Boc-protecting group was now performed in
a mixture of dichloromethane and hydrochloric acid in methanol,
from which the HCl salt and subsequently free base of FTY720
could readily be isolated. The last two steps involve four separate
transformations on the molecule, three of which eradicate all ste-
reochemical complexities. Intermediate 10 was readily isolatable
and fully characterized, however, these two steps were conducted
sequentially and FTY720 isolated in 92% overall yield from 9.
From an overall strategic synthesis viewpoint, the convergent
fusion of benzylic alcohol 8 and TRIS-derived aldehyde 5 fuses
the two essential ‘halves’ of the molecule in an efficient and
straightforward process. The salt 4 is prepared in quantitative
yield from 8 and is dissolved in water for the aqueous Wittig
reaction with 5, giving direct access to 9 as the mixture of stereo-
isomers. Hydrogenation and deprotection of 9 are carried out
sequentially, involving four separate functional group intercon-
versions that result in unravelling all stereoisomeric complica-
tions inherent in 9. The process provides for the synthesis of
FTY720 in 45% yield and only five steps from TRIS, or 62% yield
and three steps from the aldehyde 6. This compares favourably
to the method of Kim et al.,7,9f that provides FTY720 in 64% yield
but requires seven linear steps from TRIS. The readily available
bifunctional aldehyde 6 proved to be an ideal building block for
the rapid elaboration to FTY720 via the double Wittig strategy
and this synthesis should be readily amenable to the preparation
of truncated or functionalized analogues of FTY720 through their
incorporation onto 6.
12. Valentine, W. J.; Kiss, G. N.; Liu, J.; E, S.; Gotoh, M.; Murakami-Murofushi, K.;
Pham, T. C.; Baker, D. L.; Parrill, A. L.; Lu, X.; Sun, C.; Bittman, R.; Pyne, N. J.;
Tigyi, G. Cell. Signalling 2010, 22, 1543–1553.
13. Bektas, M.; Johnson, S. P.; Poe, W. E.; Bigner, D. D.; Friedman, H. S. Cancer
Chemother. Pharmaol. 2009, 64, 1053–1058.
14. For prior syntheses of FTY720 employing TRIS see Ref. 7 and: Kim, S.; Lee, H.;
Lee, M.; Lee, T. Synthesis 2006, 753–755.
15. For other syntheses of FTY720 see: (a) Adachi, K.; Kohara, T.; Nakao, N.; Arita,
M.; Chiba, K.; Mishina, T.; Sasaki, S.; Fujita, T. Bioorg. Med. Chem. Lett. 1995, 5,
853–865; (b) Kiuchi, M.; Adachi, K.; Kohara, T.; Minoguchi, M.; Hanano, T.;
Aoki, Y.; Mishina, T.; Arita, M.; Nakao, N.; Ohtsuki, M.; Hoshino, Y.; Teshima, K.;
Chiba, K.; Sasaki, S.; Fujita, T. J. Med. Chem. 2000, 43, 2946–2961; (c) Durand, P.;
Peralba, P.; Sierra, F.; Renaut, P. Synthesis 2000, 4, 505–506; (d) Kalita, B.; Barua,
N. C.; Bezbarua, M.; Bez, G. Synlett 2001, 1411–1414; (e) Hinterding, K.;
Cottens, S.; Albert, R.; Zecri, F.; Buehlmayer, P.; Spanka, C.; Brinkmann, V.;
Nussbaumer, P.; Ettmayer, P.; Hoegenauer, K.; Gray, N.; Pan, S. Synthesis 2003,
1667–1670; (f) Hale, J. J.; Yan, L.; Neway, W. E.; Hajdu, R.; Bergstrom, J. D.;
Milligan, J. A.; Shei, G.-J.; Chrebet, G. L.; Thornton, R. A.; Card, D.; Rosenbach,
M.; Rosen, H.; Mandala, S. Bioorg. Med. Chem. 2004, 12, 4803–4807; (g) Seidel,
G.; Laurich, D.; Fürstner, A. J. Org. Chem. 2004, 69, 3950–3952; (h) Sugiyama, S.;
Arai, S.; Kiriyama, M.; Ishii, K. Chem. Pharm. Bull. 2005, 53, 100–102; (i) Lu, X.;
Bittman, R. Tetrahedron Lett. 2006, 47, 825–827; (j) Matsumoto, N.; Hirose, R.;
Sasaki, S.; Fujita, T. Chem. Pharm. Bull. 2008, 56, 595–597.
16. For syntheses of analogues of FTY720 see (a) Ko, R. Y. Y.; Chu, J. C. K.; Chiu, P.
Tetrahedron 2011, 67, 2542–2547 (Note: the formation and analysis of the
obtained cis/trans isomers is not reported by these authors); (b) Li, Z.; Bittman,
R. J. Org. Chem. 2007, 72, 8376–8382; (c) Kiuchi, M.; Adachi, K.; Tomatsu, A.;
Chino, M.; Takeda, S.; Tanaka, Y.; Maeda, Y.; Sato, N.; Mitsutomi, N.; Sugahara,
K.; Chiba, K. Bioorg. Med. Chem. 2005, 13, 425–432; (d) Hale, J. J.; Neway, W.;
Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M.; Milligan, J.; Shei, G.-J.;
Chrebet, G.; Bergstrom, J.; Card, D.; Koo, G. C.; Koprak, S. L.; Jackson, J. J.; Rosen,
H.; Mandala, S. Bioorg. Med. Chem. Lett. 2004, 14, 3351–3355; (e) Hinterding, K.;
Albert, R.; Cottens, S. Tetrahedron Lett. 2002, 43, 8095–8097.
In conclusion, a short efficient synthesis of FTY720 from the
inexpensive readily available starting material TRIS and the bifunc-
tional aldehyde 6 is reported. The synthesis employs an aqueous
Wittig reaction at the point of convergence providing rapid entry
to 9 as a mixture of stereoisomers. Hydrogenation and acidic
hydrolysis of 9 yield FTY720 as the sole product in high yield. Alde-
hyde 6 proved to be a pivotal intermediate to access FTY720
employing the double Wittig strategy. Preparation and assessment
of structural analogues of FTY720 employing this method are cur-
rently under investigation.
17. (a) Das, P.; McLeod, D.; McNulty, J. Tetrahedron Lett. 2011, 52, 199–201; (b)
McNulty, J.; McLeod, D. Synlett 2011, 717–721; (c) McNulty, J.; Das, P.; McLeod,
D. Chem. Eur. J. 2010, 16, 6756–6760; (d) McNulty, J.; Das, P. Tetrahedron Lett.