Journal of the American Chemical Society
COMMUNICATION
(2) For recent examples, see: (a) Zhao, X. D.; Dong, V. M. Angew.
Chem., Int. Ed. 2011, 50, 932. (b) Oloo, W.; Zavalij, P. Y.; Zhang, J.;
Khasin, E.; Vedernikov, A. N. J. Am. Chem. Soc. 2010, 132, 14400. (c)
Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Ritter, T.
J. Am. Chem. Soc. 2010, 132, 14092. (d) Khusnutdinova, J. R.; Rath,
N. P.; Mirica, L. M. J. Am. Chem. Soc. 2010, 132, 7303. (e) Shabashov, D.;
Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965. (f) Furuya, T.; Benitez,
D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A.; Ritter, T.
J. Am. Chem. Soc. 2010, 132, 3793. (g) Racowski, J. M.; Dick, A. R.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974.
(3) (a) Wang, X.; Leow, D.; Yu, J.-Q. J. Am. Chem. Soc. 2011,
133, 13864. (b) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc.
2006, 128, 14047.
(4) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J. Am.
Chem. Soc. 2009, 131, 15945.
(18) An alternative possible route to 10 would involve electrophilic
chlorination of the aromatic ring similar to that described in ref 12a.
(19) Notably, similar selectivity was reported in ref 3, where cyclopal-
ladation at PdIV is proposed as a key step in catalysis.
(20) The oxidation of 11 with PhICl2 under otherwise identical
conditions provided 12-Cl as the major product with >10: 1 selectivity.
This suggests that site selectivity in CꢀH activation at PdIV is highly
sensitive to the ligand environment at the metal center. More extensive
investigations of ligand effects in this system are ongoing.
(21) Under analogous conditions (benzene, 4 h, 60 °C), the reaction
of 11 with NFTPT resulted in the same 1.7:1 ratio as observed in
Scheme 4.
(22) For examples, see ref 10 as well as: Kalyani, D.; Sanford, M. S.
Org. Lett. 2005, 7, 4149.
(5) Pilarski, L. T.; Selander, N.; Bose, D.; Szabo, K. J. Org. Lett. 2009,
11, 5518.
(6) Hickman, A. J.; Sanford, M. S. ACS Catal. 2011, 1, 170.
(7) Kawai, H.; Kobayshi, Y.; Oi, S.; Inoue, Y. Chem. Commun.
2008, 1464.
(8) For intermolecular CꢀH activation at PtIV centers, see: Shul’pin,
G. B.; Nizova, G. V.; Nikitaev, A. T. J. Organomet. Chem. 1984, 276, 115.
(9) For intramolecular CꢀH activation at PtIV centers, see: Mamtora,
J.; Crosby, S. H.; Newman, C. P.; Clarkson, G. J.; Rourke, J. P. Organo-
metallics 2008, 27, 5559.
(10) For representative reviews on intramolecular CꢀH activation, see:
(a) Albercht, M. Chem. Rev. 2010, 110, 576. (b) Dupont, J.; Consorti, C. S.;
Spencer, J. Chem. Rev. 2005, 105, 2527. (c) Brune, M. I. Angew. Chem., Int. Ed.
Engl. 1977, 16, 73.
(11) Use of bidentate sp2 N-donor ligands to stabilize PdIV: Canty,
A. J. Acc. Chem. Res. 1992, 25, 83.
(12) Use of chloride ligands to stabilize PdIV: (a) McCall, A. S.;
Wang, H.; Desper, J. M.; Kraft, S. J. Am. Chem. Soc. 2011, 133, 1832.
(b) Vicente, J.; Arcas, A.; Julia-Hernandez, F.; Bautista, D. Chem.
Commun. 2010, 46, 7253. (c) Vicente, J.; Chicote, M. T.; Lagunas,
M. C.; Jones, P. G.; Bembenek, E. Organometallics 1994, 13, 1243.
(d) Alsters, P. J.; Engel, P. M.; Hogerheide, M. P.; Copijn, M.; Spek,
A. L.; van Koten, G. Organometallics 1993, 12, 1831. (e) Gray, L. R.;
Gulliver, D. J.; Levason, W.; Webster, M. J. Chem. Soc., Dalton Trans.
1983, 133. (f) Kukushkin, Y. N.; Sedova, G. N.; Vlasova, R. A. Zh. Neorg.
Khim. 1978, 23, 1977. (g) Uson, R.; Fornies, J.; Navarro, R. J. Organomet.
Chem. 1975, 96, 307.
(13) Use of PhICl2 to oxidize PdII to PdIV: (a) Reference 12a.
(b) Pearson, S. L.; Sanford, M. S.; Arnold, P. J. Am. Chem. Soc. 2009,
131, 13812. (c) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007,
129, 15142. (d) Lagunas, M.-C.; Gossage, R. A.; Spek, A. L.; van Koten,
G. Organometallics 1998, 17, 731.
(14) (a) Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. J. Am. Chem.
Soc. 2011, 133, 7577. (b) Ye, Y.; Ball, N. D.; Sanford, M. S. J. Am. Chem.
Soc. 2010, 132, 14682. (c) Ball, N. D.; Kampf, J.; Sanford, M. S. J. Am.
Chem. Soc. 2010, 132, 2878.
(15) When the reaction was conducted at ꢀ30 °C, the initial NMR
spectrum showed the presence of intermediate 8 along with some of the
CꢀH activation product 5-Cl (ratio 8:5-Cl = 3:1). The [8] did not
change over several hours at ꢀ30 °C, and this ratio remained constant
over that time. Conversion of 8 to a mixture of 5-Cl and 6 only occurred
when the mixture was warmed. These data suggest that the 5-Cl formed
initially in the ꢀ30 °C experiment is generated by a different, heretofore
undetected intermediate. See Supporting Information for a detailed
discussion.
(16) 1H NMR spectroscopic studies of the oxidation of 4-d5
(in which the pendant phenyl ring is deuterated) further confirmed
the assignment of the five aromatic protons of this ring in intermediate 8.
(17) A key remaining question is the stereochemistry about the
octahedral PdIV center in 8. We have conducted several experiments
to probe this, and they provide tentative support for the structure
shown in Scheme 3. See Supporting Information (p S21) for a detailed
discussion.
18025
dx.doi.org/10.1021/ja2051099 |J. Am. Chem. Soc. 2011, 133, 18022–18025