of the 1,3-dione.20 The possibility for the involvement of
formaldehyde formed by the Nef-type reaction initiated by
traces of water present in the solvent cannot be neglected. A Nash
test was carried out to check the formation of formaldehyde.21
The outcome indicated that some amount of formadehyde is
formed under the reaction condition. If this happened at all
under the reaction conditions, it is a new observation as there
is no literature precedent for the direct Lewis acid-catalyzed
Nef reaction on a nitroalkane.
9 (a) R. Balamurugan, R. B. Kothapalli and G. K. Thota, Eur. J.
Org. Chem., 2011, 1557; (b) R. Balamurugan and V. Gudla,
Org. Lett., 2009, 11, 3116; (c) R. Balamurugan and S. R. Koppolu,
Tetrahedron, 2009, 65, 8139.
10 For synthesis of methylene bridged 1,3-dicarbonyl compounds,
see: (a) J.-N. Tan, H. Li and Y. Gu, Green Chem., 2010, 12,
1772; (b) H. Li, Z. He, X. Guo, W. Li, X. Zhao and Z. Li, Org.
Lett., 2009, 11, 4176; (c) S. Xue, Q.-F. Zhou, L.-Z. Li and
Q.-X. Guo, Synlett, 2005, 2990; (d) Y.-S. Hon, T.-R. Hsu,
C.-Y. Chen, Y.-H. Lin, F.-J. Chang, C.-H. Hsieh and P.-H. Szu,
Tetrahedron, 2003, 59, 1509; (e) D.-R. Hwang and B.-J. Uang, Org.
Lett., 2002, 4, 463; (f) K. Maruyama, K. Kubo, Y. Toda,
K. Kawase, T. Mashino and A. Nishinaga, Tetrahedron Lett.,
1995, 36, 5609.
11 For gold-catalyzed nucleophilic addition to alkenes, see:
(a) A. S. K. Hashmi, Angew. Chem., Int. Ed., 2000, 39, 3590;
(b) C.-G. Yang and C. He, J. Am. Chem. Soc., 2005, 127, 6966;
(c) X. Zhang and A. Corma, Chem. Commun., 2007, 3080; For
direct auration of acetone, see: (d) A. S. K. Hashmi, S. Schafer,
M. Wolfle, C. D. Gil, P. Fischer, A. Laguna, M. C. Blanco and
M. C. Gimeno, Angew. Chem., Int. Ed., 2007, 46, 6184.
12 R. B. Cundall and A. W. Locke, J. Chem. Soc. B, 1968, 98.
13 C. Berrier, R. Brahmi, H. Carreyre, J. M. Coustard and
J. C. Jacquesy, Tetrahedron Lett., 1989, 30, 5763.
A similar reaction with nitroethane as the solvent did not
take place with either AuCl3 or Cu(OTf)2. This may be due to
the famous ‘nitroalkane anomaly’ that the proton transfer
reactions of nitroalkanes show abnormal trends.22 Perhaps a
detailed theoretical study might give a better picture.
To summarize, the Lewis acid-activated aci-form of nitro-
methane might have been the key intermediate in the
formation of methylene-bridged bis-1,3-dicarbonyls. Theore-
tical and experimental studies on the Lewis acid activation of
the aci-form could expand the scope of nitroalkane chemistry.
The authors thank Department of Science and Technology
(DST), India for the financial support. SM is grateful to CSIR,
India for a fellowship.
14 (a) J. Guin, R. Frohlich and A. Studer, Angew. Chem., Int. Ed.,
2008, 47, 779; (b) R. Karvembu and K. Natarajan, Polyhedron,
2002, 21, 219; (c) A. Gogoll, C. Johansson, A. Axen and
H. Grennberg, Chem.–Eur. J., 2001, 7, 396; (d) A. M. Cuadro,
J. Elguero and P. Navarro, Chem. Pharm. Bull., 1985, 33, 2535.
15 (a) S. Komiya, T. Sone, Y. Usui, M. Hirano and A. Fukuoka, Gold
Bull., 1996, 29, 131; (b) A. S. K. Hashmi, Gold Bull., 2004,
37, 51.
Notes and references
1 For extensive reviews, see: (a) R. Ballini and M. Petrini, ARKIVOC,
2009, 195; (b) R. Ballini, A. Palmieri and L. Barboni, Chem.
Commun., 2008, 2975; (c) R. Ballini, M. Petrini and G. Rosini,
Molecules, 2008, 13, 319; (d) I. N. N. Namboothiri and N. Rastogi,
in Topics in Heterocyclic Chemistry, ed. A. Hassner, Springer-
Verlag, Berlin Heidelberg, 2008, vol. 12, p. 01; (e) R. Ballini,
A. Palmieri and P. Righi, Tetrahedron, 2007, 63, 12099;
(f) R. Ballini and A. Palmieri, Curr. Org. Chem., 2006, 10, 2145;
(g) R. Ballini, G. Bosica, D. Fiorini, A. Palmieri and M. Petrini,
Chem. Rev., 2005, 105, 933.
16 See supplementary information for details.
17 (a) N. Ghosh, S. Nayak and A. K. Sahoo, J. Org. Chem., 2011,
76, 500; (b) W. Wang, J. Jasinski, G. B. Hammond and B. Xu,
Angew. Chem., Int. Ed., 2010, 49, 7247; (c) W. Wang, B. Xu and
G. B. Hammond, J. Org. Chem., 2009, 74, 1640; (d) R. Casado,
M. Contel, M. Laguna, P. Romero and S. Sanz, J. Am. Chem. Soc.,
2003, 125, 11925; (e) Y. Fukuda and K. Utimoto, J. Org. Chem.,
1991, 56, 3729; (f) Y. Fukuda and K. Utimoto, Bull. Chem. Soc.
Jpn., 1991, 64, 2013.
2 For a concise review, see: R. Ballini and M. Petrini, Tetrahedron,
2004, 60, 1017.
3 (a) K. Lammertsma and P. V. Bharatam, J. Org. Chem., 2000,
65, 4662; (b) N. J. Harris and K. Lammertsma, J. Am. Chem. Soc.,
1996, 118, 8048; (c) K. Lammertsma and P. V. Bharatam, J. Am.
Chem. Soc., 1993, 115, 2348.
4 H. Feuer and A. T. Nielsen, J. Am. Chem. Soc., 1962, 84, 688.
5 (a) J. T. Edward and P. H. Tremaine, Can. J. Chem., 1971,
49, 3483; (b) J. T. Edward and P. H. Tremaine, Can. J. Chem.,
1971, 49, 3489; (c) J. T. Edward and P. H. Tremaine, Can. J.
Chem., 1971, 49, 3493.
6 I. Erden, J. R. Keeffe, F.-P. Xu and J.-B. Zheng, J. Am. Chem.
Soc., 1993, 115, 9834.
7 H. Bock, R. Dienelt, H. Schodel, Z. Havlas, E. Herdtweck and
W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1993, 32, 1758.
8 F.-A. Kang and C.-L. Yin, J. Org. Chem., 1996, 61, 5523.
18 For a mini review on gold-catalyzed reactions with characterized
intermediates, see: A. S. K. Hashmi, Angew. Chem., Int. Ed., 2010,
49, 5232.
19 Y. Zhang, J. Jiao and R. A. Flowers, II, J. Org. Chem., 2006,
71, 4516.
20 C. L. Bickel and R. Morris, J. Am. Chem. Soc., 1951, 73, 1786 and
the references cited therein.
21 T. Nash, Biochem. J., 1953, 55, 416. The details of the Nash test are
described in the supplementary information.
22 (a) A. J. Kresge, Can. J. Chem., 1974, 52, 1897; For recent studies
on this issue, see: (b) K. Ando, Y. Shimazu, N. Seki and
H. Yamataka, J. Org. Chem., 2011, 76, 3937; (c) M. Sato,
Y. Kitamura, N. Yoshimura and H. Yamataka, J. Org. Chem.,
2009, 74, 1268; (d) T. Bug, T. Lemek and H. Mayr, J. Org. Chem.,
2004, 69, 7565; (e) J. Grinblat, M. Ben-Zion and S. Hoz, J. Am.
Chem. Soc., 2001, 123, 10738.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11143–11145 11145