52
H.R. Memarain, M. Ranjbar / Journal of Molecular Catalysis A: Chemical 356 (2012) 46–52
the nature of C4 substitution, especially on the type and location of
the additional substituent on the aromatic ring at C4 position. The
important part of the photosensitized oxidation reaction of THPMs
is the adsorption of the substrate at the semiconductor surface, as
a key step in the electron-transfer process. The parameters, either
inhibits such adsorption, resulted in slower conversion of THPMs
to the corresponding DHPMs. The UV reaction spectra of TiO2 sen-
sitized oxidation of compounds 1a, 3a and 5a, as representative
substrates, and the corresponding extinction time diagram shown
in Fig. 5 indicate that the order of the oxidative ability of these
compounds is 3a > 1a > 5a. This explains that the enhanced reactiv-
ity of 3a compared with 1a is due to the positive inductive effect of
the methyl group, whereas the presence of the large and electron-
withdrawing phenyl group in 5a causes decreasing rate of reaction.
The influence of the steric hindrance on the lowering the rate of oxi-
dation reaction is also reported on the photo-oxidative dealkylation
of ␣-alkylbenzyl methyl ethers induced by TiO2 [42]. Computa-
tional studies carried out on some of these compounds support
this argument [40]. As representative, the characteristic data of the
computational studies of compounds 1a, 3a and 5a obtained from
their optimized structures are presented in Fig. 7. These results
explain that by changing the substitution in the 1-position from
hydrogen to methyl or phenyl, the dihedral angle of the aromatic
ring toward the heterocyclic ring (C12–C11–C4–N3), the dihedral
angle of 5-CO with respect to the C5 C6 bond (O8C7C5C6), the
dihedral angle formed by H(C)N1C6C10 atoms and also deviation
of the C4- and N1-atoms from ring planarity are affected. The
interesting point is that these dihedral angles depend on the type
of substituent in 1-position. This observation is possibly due to
increased gauche interaction of 6-CH3 with 1-H, 1-CH3 and 1-
C6H5.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] P. Kamat, Molecular level artificial photosynthetic materials, in: G.J. Mayer
(Ed.), Progress in Inorganic Chemistry Series, vol. 44, Wiley & Sons, New York,
1996, p. 273.
[2] K. Demeestere, A. De Visscher, J. Dewulf, M. Van Leeuwen, H. Van Langenhove,
Appl. Catal. B 54 (2004) 261–274.
[3] N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 157 (2003)
111–116.
[4] M.H. Habibi, N. Talebian, Dyes Pigm. 73 (2007) 186–194.
[5] C.-Y. Chen, Water Air Soil Pollut. 202 (2009) 335–342.
[6] P.A. Kolinko, D.V. Kozlov, Appl. Catal. B 90 (2009) 126–131.
[7] J. Marugán, R.V. Grieken, A.E. Cassano, O.M. Alfano, Catal. Today 144 (2009)
87–93.
[8] R. Pourata, A.R. Khataee, S. Aber, N. Daneshvar, Desalination 249 (2009)
301–307.
[9] S. Higashimoto, K. Okada, T. Morisugi, M. Azuma, H. Ohue, T. Kim, M. Matsuoka,
M. Anpo, Top. Catal. 53 (2010) 578–583.
[10] T.D. Giacco, M. Ranchella, C. Rol, G.V. Sebastiani, J. Phys. Org. Chem. 13 (2000)
745–751.
[11] M. Bettoni, T.D. Giacco, C. Rol, G.V. Sebastiani, J. Photochem. Photobiol. A 190
(2007) 34–40.
[12] O.S. Mohamed, A.M. Gaber, A.A. Abdel-Wahab, J. Photochem. Photobiol. A 148
(2002) 205–210.
[13] H. Vosooghian, M.H. Habibi, J. Photoenergy (2007) 7.
[14] A.L. Giraldo, G.A. Pen˜uela, R.A. Torres-Palma, N.J. Pino, R.A. Palominos, H.D.
Mansilla, Water Res. 44 (2010) 5158–5167.
[15] U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C 9 (2008) 1–12.
[16] V. Virsodia, R.R.S. Pissurlenkar, D. Manvar, C. Dholakia, P. Adlakha, A. Shah, E.C.
Coutinho, Eur. J. Med. Chem. 43 (2008) 2103–2115.
[17] K. Singh, D. Arora, E. Poremsky, J. Lowery, R.S. Moreland, Eur. J. Med. Chem. 44
(2009) 1997–2001.
[18] S. Chitra, D. Devanathan, K. Pandiarajan, Eur. J. Med. Chem. 45 (2010) 367–371.
[19] D.A. Ibrahim, A.M. El-Metwally, Eur. J. Med. Chem. 45 (2010) 1158–1166.
[20] K. Sujatha, P. Shanmugam, P.T. Perumal, D. Muralidharan, M. Rajendran, Bioorg.
Med. Chem. Lett. 16 (2006) 4893–4897.
[21] A.D. Patil, N.V. Kumar, W. Kokke, M.F. Bean, A.J. Freyer, C. De Brosse, S. Mai,
A. Truneh, D.J. Faulkner, B. Carte, A.L. Breen, R.P. Hertzberg, R.K. Johnson, J.W.
Westley, B.C.M. Potts, J. Org. Chem. 60 (1995) 1182–1188.
[22] H.R. Memarian, A. Farhadi, J. Iran. Chem. Soc. 6 (2009) 638–646.
[23] H.R. Memarian, A. Farhadi, Ultrason. Sonochem. 15 (2008) 1015–1018.
[24] H.R. Memarian, A. Farhadi, H. Sabzyan, Ultrason. Sonochem. 17 (2010) 579–586.
[25] H.R. Memarian, H. Sabzyan, A. Farhadi, Z. Naturforsch. 64b (2009) 532–540.
[26] H.R. Memarian, A. Farhadi, Monatsh. Chem. 140 (2009) 1217–1220.
[27] H.R. Memarian, A. Farhadi, H. Sabzyan, J. Photochem. Photobiol. A 209 (2010)
95–103.
[28] H.R. Memarian, M. Ranjbar, J. Chin. Chem. Soc. 58 (2011) 522–527.
[29] R.R. Bacsa, J. Kiwi, Appl. Catal. B 16 (1998) 19–29.
[30] S. Yamazaki, S. Matsunaga, K. Hori, Water Res. 35 (2001) 1022–1028.
[31] R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, Korean J. Chem. Eng. 25 (2008)
64–72.
4. Conclusion
In conclusion, the present study reports photo-sensitized
oxidation of various 1-, 4-, and 5-substituted 2-oxo-1,2,3,4-
tetrahydropyrimidines (THPMs) by TiO2 anatase nanoparticles to
their corresponding 2-oxo-1,2-dihydropyrimidines (DHPMs). The
results explain the steric and the electronic effects of the substi-
tutions especially at the 1-position on the rate of oxidation. These
results also indicate that in comparison with the steric and the elec-
tronic effects of the 4-substituents on the rate of reaction, the type
of the substituent on the 5-position has a little effect. All these facts
support the argument that a key step of this oxidative reaction is the
electron transfer from THPM molecule to photogenerated holes. In
protic solvents, or in the presence of water, the oxidative reaction
is retarded.
[32] S.K. Kansal, J. Kaur, S. Singh, React. Kinet. Catal. Lett. 98 (2009) 177–186.
[33] P. Saravanan, K. Pakshirajan, P. Saha, J. Hydro-Environ. Res. 3 (2009) 45–50.
[34] H.R. Memarian, M. Ranjbar, M.H. Habibi, T. Suzuki, unpublished results.
[35] D. Vildozo, C. Ferronato, M. Sleiman, J. Chovelon, Appl. Catal. B 94 (2010)
303–310.
[36] U.R. Pillai, E. Sahle-Demessie, J. Catal. 211 (2002) 434–444.
[37] Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa, A.Y. Nosaka, Phys. Chem. Chem.
Phys. 5 (2003) 4731–4735.
Acknowledgments
[38] H.R. Memarian, H. Sabzyan, A. Farhadi, Monatsh. Chem. 141 (2010) 1203–1212.
[39] H.R. Memarian, H. Sabzyan, M. Soleymani, M.H. Habibi, T. Suzuki, J. Mol. Struct.
998 (2011) 91–98.
[40] H.R. Memarian, H. Sabzyan, M. Ranjbar, unpublished results.
[41] H.R. Memarian, M. Soleymani, H. Sabzyan, M. Bagherzadeh, H. Ahmadi, J. Phys.
Chem. A 115 (2011) 8264–8270.
We are thankful to the Center of Excellence (Chemistry),
Research Council and Office of Graduate Studies of the University of
Isfahan for their financial support. The authors would like to thank
Professor M.H. Habibi for providing photocatalysts, and Professor
H. Sabzyan for discussion on the computational results.
[42] M. Bettoni, T.D. Giacco, C. Rol, G.V. Sebastiani, J. Phys. Org. Chem. 19 (2006)
18–24.