ORGANIC
LETTERS
2011
Vol. 13, No. 22
6134–6136
Synthesis of Novel Azaspiro[3.4]octanes
as Multifunctional Modules in Drug
Discovery
Dong Bo Li,† Mark Rogers-Evans,*,‡ and Erick M. Carreira*,†
Laboratorium fu€r Organische Chemie, ETH Zu€rich, CH-8093 Zu€rich, Switzerland, and
Discovery Research, Chemistry Technologies & Innovation, F. Hoffmann-La Roche AG,
CH-4070 Basel, Switzerland
mark.rogers-evans@roche.com; carreira@org.chem.ethz.ch
Received September 19, 2011
ABSTRACT
Step-economic and scalable syntheses of novel thia-azaspiro[3.4]octanes are reported. These spirocycles and some related intermediates can
serve as uncharted multifunctional modules for drug discovery chemistry.
The identification of novel building blocks through
design and synthesis constitutes a critical role for organic
chemistry in the drug discovery process. We have recently
described a collection of spirocylic building blocks,1À3
which provide entry into novel chemical, pharmacological,
and proprietary space. In line with these interests we con-
tinue to expand the collection of spirocycles by exploring
new structures. Characteristics of these “compact mod-
ules” are that they should have tunable polarities affecting
the phys-chem and safety parameters as well as that they
should be amenable to vectorization. The latter provides
ready shape diversity, a feature critical to contemporary
compound collections looking to access poorly or un-
charted 3D-macromolecular biological targets. In this
context, our recent pursuits have included thia-azaspiro-
[3.4]octanes (Figure 1). The concept driving our interest in
these structures initially was their similarity to the parent
diazaspiro[3.3]heptanes2b,c and newly developed azaspiro-
[3.3]heptane scaffolds2a in our group (Figure 1) and the
fact that these position functional groups and attendant
exit vectors in a cambered environment. Additionally, we
reasoned that the inclusion of a heteroatom, such as sulfur,
particularly in its oxidized state, at different positions of
the spirocycle would serve to generate uncharted spiro-
[3.4]octanes that intuitively resembled “drug-like” frag-
ments. Herein, we report convenient constructions of the
novel thia-azaspirocyclic systems.
† ETH Z€urich.
‡ F. Hoffmann-La Roche AG.
(1) For oxetanes and related spirocycles, see: (a) Wuitschik, G.;
€
Rogers-Evans, M.; Muller, K.; Fischer, H.; Wagner, B.; Schuler, F.;
Polonchuk, L.; Carreira, E. M. Angew. Chem., Int. Ed. 2006, 45, 7736–
7739. (b) Wuitschik, G.; Rogers-Evans, M.; Buckl, A.; Bernasconi, M.;
€
Marki, M.; Godel, T.; Fischer, H.; Wagner, B.; Parrilla, I.; Schuler, F.;
Schneider, J.; Alker, A.; Schweizer, W. B.; Muller, K.; Carreira, E. M.
€
Angew. Chem., Int. Ed. 2008, 47, 4512–4515. (c) Wuitschik, G.; Carreira,
€
E. M.; Rogers-Evans, M.; Muller, K. Oxetan-3-one: chemistry and
synthesis. In Process Chemistry in the Pharmaceutical Industry;
Gadamasetti, K., Braish, T., Eds.; CRC Press: Boca Raton, FL, 2008; pp
217À229. (d) Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H.;
€
Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Muller, K. J. Med. Chem. 2010,
(3) For other recent related work, see: (a) Xu, R.; Czarniecki, M.; de
Man, J.; Pan, J.; Qiang, L.; Root, Y.; Ying, S.; Su, J.; Sun, X.; Zhang, Y.;
Yu, T.; Zhang, Y.; Hu, T.; Chen, S.-H. Tetrahedron Lett. 2011, 52, 3266–
3270. (b) Meyers, M. J.; Muizebelt, I.; van Wiltenburg, J.; Brown, D. L.;
Thorarensen, A. Org. Lett. 2009, 11, 3523–3525. (c) Duncton, M. A. J.;
Estiarte, M. A.; Johnson, R. J.; Cox, M.; O’Mahony, D. J. R.; Edwards,
W. T.; Kelly, M. G. J. Org. Chem. 2009, 74, 6354–6357. (d) Duncton,
M. A. J.; Estiarte, M. A.; Tan, D.; Kaub, C.; O’Mahony, D. J. R.;
Johnson, R. J.; Cox, M.; Edwards, W. T.; Wan, M.; Kincaid, J.; Kelly,
M. G. Org. Lett. 2008, 10, 3259–3262.
53, 3227–3246. (e) Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.;
€
Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 9052–9067.
ꢀ
(2) For azaspiro[3.3]heptanes, see: (a) Guerot, C.; Tchitchanov, B. H.;
Knust, H.; Carreira, E. M. Org. Lett. 2011, 13, 780–783. (b) Burkhard,
€
J. A.; Wagner, B.; Fischer, H.; Schuler, F.; Muller, K.; Carreira, E. M.
ꢀ
Angew. Chem., Int. Ed. 2010, 49, 3524–3527. (c) Burkhard, J. A.; Guerot,
C.; Knust, H.; Rogers-Evans, M.; Carreira, E. M. Org. Lett. 2010, 12,
1944–1947. (d) Burkhard, J.; Carreira, E. M. Org. Lett. 2008, 10, 3525–
3526.
r
10.1021/ol2025313
Published on Web 10/18/2011
2011 American Chemical Society