Enzymatic Baeyer–Villiger Oxidation of Benzo-Fused Ketones
6-phosphate (2.0 equiv.), glucose-6-phosphate dehydrogenase (10.0
units), NADPH (0.2 mm) and the corresponding Baeyer–Villiger
monooxygenase (1.0 unit). The mixture was shaken at 250 r.p.m.
and the selected temperature in a rotatory shaker for the times indi-
cated. The reactions were then stopped, the mixtures worked up by
extraction with ethyl acetate (2ϫ0.5 mL), dried with Na2SO4 and
analysed directly by chiral GC to determine the conversion. For all
the reaction media tested, control experiments in the absence of
enzyme resulted in no conversion.
financed by the European Social Fund. G. d. G. (Juan de la Cierva
Program) thanks MICINN for personal funding. This work was
supported by the MICINN (Project CTQ2007-61126). M. W. F.
and D. E. T. P. received support from the EU-FP7 “Oxygreen” pro-
ject.
[1]
[2]
A. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges. 1899, 32, 3625–
3633.
a) S. Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew.
Chem. Int. Ed. 2008, 47, 2840–2843; b) G. Peris, S. J. Miller,
Org. Lett. 2008, 10, 3049–3052; c) G.-J. Ten Brink, I. W. C. E.
Arends, R. A. Sheldon, Chem. Rev. 2004, 104, 4105–4123; d)
S.-I. Murahashi, S. Ono, Y. Imada, Angew. Chem. Int. Ed.
2002, 41, 2366–2368; e) M. Renz, B. Meunier, Eur. J. Org.
Chem. 1999, 4, 737–750.
General Procedure for the Enzymatic Synthesis of Lactones 5c, 7c
and 8c on the Multimilligram Scale: Reactions were performed in
duplicate. Ketones 5a, 7a and 8a (50 mg) were dissolved in 50 m
Tris-HCl buffer (pH 9.0, 10 mL) containing glucose-6-phosphate
(1.5 equiv.), glucose-6-phosphate dehydrogenase (20 units),
NADPH (0.02 mm) and M446G phenylacetone monooxygenase
(1.5 units). The mixtures were shaken at 30 °C and 250 r.p.m. for
72 h. Once finished, the reaction mixtures were extracted with
EtOAc (3ϫ25 mL), and the combined organic layers were dried
with Na2SO4, filtered and concentrated under reduced pressure.
The residues were purified by flash chromatography on silica gel
with hexane/ethyl acetate (8:2) to afford the corresponding lactones
5c and 7c and with hexane/ethyl acetate (7:3) to obtain compound
8c.
[3]
For some recent bibliographies, see: a) M. M. Kayser, Tetrahe-
dron 2009, 65, 947–974; b) D. E. Torres Pazmiño, M. W. Fraaije
in Future Directions in Biocatalysis (Ed.: T. Matsuda), Elsevier,
Dordrecht, 2007, pp. 107–127, and references cited therein; c)
M. W. Fraaije, D. B. Janssen in Modern Biooxidation, Enzymes,
Reactions and Application (Eds.: R. D. Schmid, V. D. Urlacher),
Wiley-VCH, Weinheim, 2007, pp. 77–94; d) M. D. Mihovilovic,
Curr. Org. Chem. 2006, 10, 1265–1287; e) N. M. Kamerbeerk,
D. B. Janssen, J. H. van Berkel, M. W. Fraaije, Adv. Synth. Ca-
tal. 2003, 345, 667–678; f) V. Alphand, G. Carrea, R. Wohlge-
muth, R. Furstoss, J. M. Woodley, Trends Biotechnol. 2003, 21,
318–323; g) M. D. Mihovilovic, B. Müller, P. Stanetty, Eur. J.
Org. Chem. 2002, 3711–3730.
6-Chloroisochroman-1-one (5c): Yield: 39.4 mg (72%). Colourless
solid, m.p. 58–59 °C. IR (KBr): ν = 3052, 2970, 1740, 1475 cm–1.
˜
1H NMR (300.13 MHz, CDCl3, 25 °C): δ = 3.08 (t, 3JH,H = 7.5 Hz,
3
3
2 H), 4.57 (t, JH,H = 7.5 Hz, 2 H), 7.40 (d, JH,H = 7.0 Hz, 1 H),
[4]
For some examples, see: a) M. D. Mihovilovic, P. Kapitan, P.
Kapitánová, ChemSusChem 2008, 1, 143–148; b) P. Cernu-
7.60 (s, 1 H), 7.94 (d, JH,H = 7.0 Hz, 1 H) ppm. 13C NMR
3
ˇ
(75.5 MHz, CDCl3, 25 °C): δ = 27.7 (CH2), 67.2 (CH2), 125.1
(CHar), 127.1 (CHar), 127.6 (Car), 130.2 (CHar), 133.5 (Car), 139.4
(Car), 164.9 (C=O) ppm. MS (EI): m/z (%) = 182 (90) [M]+, 154
(80), 138 (12), 126 (70), 77 (60). HRMS (EI): calcd. for C9H7ClO2
[M]+ 182.01346; found 182.01504.
chova, M. D. Mihovilovic, Org. Biomol. Chem. 2007, 5, 1715–
1719; c) R. Snajdrova, G. Grogan, M. D. Mihovilovic, Bioorg.
Med. Chem. Lett. 2006, 16, 4813–4817; d) F. Petit, R. Furstoss,
Tetrahedron: Asymmetry 1993, 4, 1341–1352; e) A. J. Carnell,
S. M. Roberts, V. Sik, A. J. Willets, J. Chem. Soc. Perkin Trans.
1 1991, 2385–2390.
a) G. Carrea, S. Riva in Asymmetric Organic Synthesis with
Enzymes (Eds.: V. Gotor, I. Alfonso, E. García-Urdiales),
Wiley-VCH, Weinheim, 2008, pp 3–20, and references cited
therein; b) A. M. Klibanov, Nature 2001, 409, 241–246.
a) G. de Gonzalo, G. Ottolina, F. Zambianchi, M. W. Fraaije,
G. Carrea, J. Mol. Catal. B 2006, 39, 91–97; b) C. Rodríguez,
G. de Gonzalo, D. E. Torres Pazmiño, M. W. Fraaije, V. Gotor,
Tetrahedron: Asymmetry 2008, 19, 197–203.
6-Bromoisochroman-1-one (7c): Yield: 34.9 mg (65%). Pale-yellow
[5]
[6]
solid, m.p. 63–65 °C IR (KBr): ν = 3052, 2980, 1736, 1470 cm–1.
˜
1H NMR (300.13 MHz, CDCl3, 25 °C): δ = 3.12 (t, 3JH,H = 6.8 Hz,
3
3
2 H), 4.60 (t, JHH = 6.8 Hz, 2 H), 7.50 (d, JH,H = 7.2 Hz, 1 H),
7.55 (s, 1 H), 7.91 (d, JH,H = 7.2 Hz, 1 H) ppm. 13C NMR
3
(75.5 MHz, CDCl3, 25 °C): δ = 26.5 (CH2), 65.6 (CH2), 127.3 (Car),
128.8 (CHar), 132.0 (CHar), 132.4 (Car), 132.6 (CHar), 144.1 (Car),
165.2 (C=O) ppm. MS (EI): m/z (%) = 226 (100) [M]+, 188 (70),
182 (10), 154 (60), 77 (80). HRMS (EI): calcd. for C9H7BrO2
[M]+ 225.96294; found 225.95931.
[7]
[8]
[9]
F. Schulz, F. Leca, F. Hollman, M. T. Reetz, Bels. J. Org. Chem.
2006, 1, 10.
M. C. Gutiérrez, V. Alphand, R. Furstoss, J. Mol. Catal. B
2003, 21, 231–238.
a) M. W. Fraaije, J. Wu, D. P. H. M. Heuts, E. W. van Helle-
mond, J. H. Lutje Spelberg, D. B. Janssen, Appl. Microbiol.
Biotechnol. 2005, 66, 393–400; b) G. de Gonzalo, D. E.
Torres Pazmiño, G. Ottolina, M. W. Fraaije, G. Carrea, Tetra-
hedron: Asymmetry 2005, 16, 3077–3083; c) M. Bocola, F.
Schulz, F. Leca, A. Vogel, M. W. Fraaije, M. T. Reetz, Adv.
Synth. Catal. 2005, 347, 979–986; d) C. Rodríguez, G. de Gon-
zalo, M. W. Fraaije, V. Gotor, Tetrahedron: Asymmetry 2007,
18, 1338–1344.
5-Methoxyisochroman-1-one (8c): Yield: 15.4 mg (28%). Pale-yel-
low solid, m.p. 44–46 °C. IR (KBr): ν = 3040, 2975, 1747,
˜
1482 cm–1. 1H NMR (300.13 MHz, CDCl3, 25 °C): δ = 3.13 (t,
3
3JH,H = 7.0 Hz, 2 H), 3.80 (s, 3 H), 4.61 (t, JH,H = 7.0 Hz, 2 H),
3
7.03–7.09 (m, 2 H), 7.67 (d, JH,H = 7.8 Hz, 1 H) ppm. 13C NMR
(75.5 MHz, CDCl3, 25 °C): δ = 28.5 (CH2), 55.7 (CH3), 65.9 (CH2),
106.2 (CHar), 109.4 (CHar), 123.2 (Car), 128.2 (CHar), 140.8 (Car),
152.6 (Car), 168.3 (C=O) ppm. MS (EI): m/z (%) = 178 (100)
[M]+, 150 (90), 134 (45), 106 (12), 77 (40). HRMS (EI): calcd. for
C10H10O3 [M]+ 178.06299; found 178.06547.
[10]
a) N. M. Kamerbeek, M. J. H. Moonen, J. G. M. van der Ven,
W. J. H. van Berkel, M. W. Fraaije, D. B. Janssen, Eur. J.
Biochem. 2001, 268, 2547–2557; b) N. M. Kamerbeek, A. J. J.
Osthorrn, M. W. Fraaije, D. B. Janssen, Appl. Environ. Micro-
biol. 2003, 69, 419–426; c) M. D. Mihovilovic, P. Kapitan, J.
Rydz, F. Rudroff, F. H. Ogink, M. W. Fraaije, J. Mol. Catal. B
2005, 32, 135–140.
Supporting Information (see footnote on the first page of this arti-
cle): Complete results of the enzymatic oxidation of 1-indanone
and its derivatives in all the reaction media, as well as the GC data
1
and H and 13C NMR spectra of lactones 5c, 6b, 7c, 8b and 8c.
Acknowledgments
[11]
[12]
D. E. Torres Pazmiño, R. Snajdrova, D. V. Rial, M. D. Mihovi-
lovic, M. W. Fraaije, Adv. Synth. Catal. 2007, 349, 1361–1368.
C.-H. Wong, G. M. Whitesides, J. Am. Chem. Soc. 1981, 103,
4890–4899.
A. R.-M. (FPU Program) thanks the Spanish Ministerio de Ciencia
e Innovación (MICINN) for her predoctoral fellowship which is
Eur. J. Org. Chem. 2009, 2526–2532
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2531