5780
A. G. Larina et al. / Tetrahedron Letters 52 (2011) 5777–5781
Ar1
Ar1
O
Ar1
Ar1
C
Ar1
O
N
C
Ar2
O
Ar1
PhHN
A
B
N
PhHN
+
Ar2
H
O
O
major diastereomer
PhHN
O
Ar1
Ar1
O
Ar1
Ar1
N
Ar2
C
O
N
Ar2
O
PhHN
N
PhHN
Ar2
H
O
minor diastereomer
Scheme 1. Possible pathways for the reaction of nitrones 11a,b with vinylidenecyclopropanes 8a,b.
entry 1).14 It was not possible to isolate the major diastereomers
from the mixtures of 120b,c. The structure of 12a was established
unequivocally by X-ray diffraction analysis (Fig. 3).15 The stereo-
chemical outcome of the reaction between 8a,b and 11a,b is out-
lined in Scheme 1. Formation of the major diastereomer occurs
by approach of the nitrone dipole from the least hindered side of
the cyclopropane ring (Scheme 1, path A).
In conclusion, the first examples of 1,3-dipolar cycloaddition
reactions of nitrones to non-activated vinylidenecyclopropanes
have been described. The nitrones react with the C10–C20 double
bond of the vinylidenecyclopropanes to give the corresponding
4-cyclopropylidene-isoxazolidines in moderate yields. Regioiso-
meric products and products of nitrone addition to the C1–C10 dou-
ble bond were not observed. It is clear from the data that the
cycloaddition occurs with high regioselectivity. The high regiose-
lectivity observed in these 1,3-dipolar cycloadditions can be ex-
plained from two point of views: (1) steric interactions between
the substituents on the reactants, and (2) atomic orbital coeffi-
cients of the HOMO (nitrone)–LUMO (vinylidenecyclopropane) fa-
vour the expected interaction for this type of cycloaddition, which
is in accordance with previous literature on cycloadditions of nitro-
nes to allenes.2
ˇ
A. Chem. Rev. 2003, 103, 1213; (c) Dugovic, B.; Fišera, L.; Reißig, H. Eur. J. Org.
Chem. 2008, 277; (d) Piperno, A.; Rescifina, A.; Corsaro, A.; Chiacchio, M.;
Procopio, A.; Romeo, R. Eur. J. Org. Chem. 2007, 1517; (e) Chiacchio, U.; Corsaro,
A.; Iannazzo, D.; Piperno, A.; Romeo, G.; Romeo, A.; Saita, M. G.; Rescifina, A.
Eur. J. Org. Chem. 2007, 4758; (f) Dolbier, W. G., Jr.; Burkholder, K. G.; Wicks, G.
E.; Palenik, G. J.; Gawron, M. J. Am. Chem. Soc. 1985, 107, 7183; (g) Dolbier, W.
R.; Wicks, G. E.; Burkholder, G. R. J. Org. Chem. 1987, 52, 2196; (h) Padwa, A.;
Kline, D. N.; Koehler, K. F.; Matzinger, M.; Venkatramanan, M. K. J. Org. Chem.
1987, 52, 3909; (i) Padwa, A.; Matzinger, M.; Tomioka, Y.; Venkatramanan, M.
K. J. Org. Chem. 1988, 53, 955; (j) Padwa, A.; Bullock, W. H.; Kline, D. N.;
Perumattam, J. J. Org. Chem. 1989, 54, 2862; (k) Padwa, A.; Kline, D. N.; Norman,
B. H. J. Org. Chem. 1989, 54, 810; (l) Tufariello, J. J.; Ali, Sk. A.; Klingele, H. O. J.
Org. Chem. 1989, 44, 4213; (m) Kawai, T.; Kodama, K.; Ooi, T.; Kusumi, T.
Tetrahedron Lett. 2004, 45, 4097; (n) Padwa, A.; Carter, S. P.; Chiacchio, U.; Kline,
D. N. Tetrahedron Lett. 1986, 27, 2683; (o) Sasaki, T.; Eguchi, S.; Hirako, Y.
Tetrahedron Lett. 1976, 7, 541; (p) Padwa, A.; Meske, M.; Ni, Z. Tetrahedron Lett.
1993, 34, 5047; (q) Wilkens, J.; Kühling, A.; Blechert, S. Tetrahedron 1987, 43,
3237; (r) Padwa, A.; Meske, M.; Ni, Z. Tetrahedron 1995, 51, 89; (s) Zhao, B.-X.;
Eguchi, S. Tetrahedron 1997, 53, 9575; (t) Pellissier, H. Tetrahedron 2010, 66,
8341.
3. (a) Goti, A.; Cordero, F. M.; Brandi, A. Top. Curr. Chem. 1996, 178, 1; (b) de
Meijere, A.; Kozhushkov, S. I.; Khlebnikov, A. F. Top. Curr. Chem. 2000, 207, 89;
(c) de Meijere, A.; Kozhushkov, S. I.; Hadjiarapoglou, L. P. Top. Curr. Chem. 2000,
207, 149; (d) de Meijere, A.; Kozhushkov, S. I. Eur. J. Org. Chem. 2000, 3809; (e)
de Meijere, A.; Kozhushkov, S. I.; Spath, T.; von Seebach, M.; Lohr, S.; Nuske, H.;
Pohlmann, T.; Es-Sayed, M.; Brase, S. Pure Appl. Chem. 2000, 72, 1745; (f)
Revuelta, J.; Cicchi, S.; de Meijere, A.; Brandi, A. Eur. J. Org. Chem. 2008, 1085; (g)
Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589; (h) Cardona, F.; Goti, A.; Brandi, A.
Eur. J. Org. Chem. 2007, 1551; (i) Marradi, M.; Brandi, A.; Magull, J.; Schill, H.; de
Meijere, A. Eur. J. Org. Chem. 2006, 5485; (j) Brandi, A.; Cardona, F.; Cicchi, S.;
Cordero, F. M.; Goti, A. Chem. Eur. J. 2009, 15, 7808; (k) Revuelta, J.; Cicchi, S.;
Goti, A.; Brandi, A. Synthesis 2007, 485; (l) Marradi, M.; Brandi, A.; de Meijere, A.
Synlett 2006, 1125; (m) Tran, T. Q.; Diev, V. V.; Molchanov, A. P. Tetrahedron
2011, 67, 2391; (n) Diev, V. V.; Stetsenko, O. N.; Tran, T. Q.; Kopf, J.; Kostikov, R.
R.; Molchanov, A. P. J. Org. Chem. 2008, 73, 2396; (o) Diev, V. V.; Tran, T. Q.;
Molchanov, A. P. Eur. J. Org. Chem. 2009, 525.
Acknowledgement
We are grateful to Dr. Sergey Vyazmin and Elena Grinenko for
recording IR and MS spectra.
4. Wu, L.; Shi, M. Chem. Eur. J. 2010, 16, 1149.
5. (a) Wu, L.; Shi, M. J. Org. Chem. 2010, 75, 2296; (b) Liu, L.-P.; Lu, J.-M.; Shi, M.
Org. Lett. 2007, 9, 1303.
Supplementary data
6. (a) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. Chem. Rev. 2010,
110, 5883; (b) Su, C.; Huang, X. Adv. Synth. Catal. 2009, 351, 135; (c) Yao, L.-F.;
Shi, M. Chem. Eur. J. 2009, 15, 3875; (d) Wu, L.; Shi, M. Eur. J. Org. Chem. 2011,
1099; (e) Lu, J.-M.; Shi, M. Chem. Eur. J. 2009, 15, 6065; (f) Yao, L.-F.; Shi, M. Eur.
J. Org. Chem. 2009, 4036; (g) Su, C.; Huang, X.; Liu, Q.; Huang, X. J. Org. Chem.
2009, 74, 8272; (h) Li, W.; Shi, M. J. Org. Chem. 2009, 74, 856; (i) Jiang, M.; Shi,
M. Tetrahedron 2009, 65, 5222; (j) Li, W.; Shi, M. Tetrahedron 2009, 65, 6815; (k)
Lu, B.-L.; Lu, J.-M.; Shi, M. Tetrahedron 2009, 65, 9328; (l) Lu, B.-L.; Lu, J.-M.; Shi,
M. Tetrahedron Lett. 2010, 51, 321; (m) Lu, J.-M.; Shi, M. J. Org. Chem. 2008, 73,
2206; (n) Li, W.; Shi, M. J. Org. Chem. 2008, 73, 4151; (o) Li, W.; Shi, M. J. Org.
Chem. 2008, 73, 6698; (p) Shi, M.; Wu, L.; Lu, J.-M. J. Org. Chem. 2008, 73, 8344;
(q) Lu, J.-M.; Shi, M. Org. Lett. 2008, 10, 1943; (r) Campbell, M. J.; Pohlhaus, P. D.;
Min, G.; Ohmatsu, K.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 9180; (s) Shi, M.;
Yao, L.-F. Chem. Eur. J. 2008, 14, 8725; (t) Xu, G.-C.; Liu, L.-P.; Lu, J.-M.; Shi, M. J.
Am. Chem. Soc. 2005, 127, 14552; (u) Maeda, H.; Hirai, T.; Sugimoto, A.; Mizuno,
K. J. Org. Chem. 2003, 68, 7700; (v) Shi, M.; Lu, J.-M. J. Org. Chem. 2006, 71, 1920.
7. (a) Zhang, Y.-P.; Lu, J.-M.; Xu, G.-C.; Shi, M. J. Org. Chem. 2007, 72, 509; (b)
Mizuno, K.; Maeda, H.; Sugita, H.; Nishioka, S.; Hirai, T.; Sugimoto, A. Org. Lett.
2001, 3, 581; (c) Li, Q.; Shi, M.; Timmons, C.; Li, G. Org. Lett. 2006, 8, 625; (d)
Shao, L.-X.; Yun-Peng Zhang, Y.-P.; Qi, M.-X.; Shi, M. Org. Lett. 2007, 9, 117; (e)
Lu, J.-M.; Shi, M. Org. Lett. 2007, 9, 1805; (f) Xu, G.-C.; Ma, M.; Liu, L.-P.; Shi, M.
Supplementary data associated with this Letter can be found, in
References and notes
1. (a) Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley:
New York, NY, 1984; Vol. 2, pp 83–168; (b) Jones, R. C. F.; Martin, J. N. In
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles
and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, NY,
2002; pp 1–81; (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863; (d)
Gothelf, K. V.; Kanemasa, S. In Cycloaddition Reactions in Organic Synthesis;
Kobayashi, S., Jørgensen, K. A., Eds.; Wiley: Weinheim (Germany), 2002; pp
211–280; (e) Gothelf, K. V.; Jørgensen, K. A. Chem. Commun. 2000, 1449; (f)
Kanemasa, S. Synlett 2002, 1371; (g) Maas, G. In The Chemistry of Heterocyclic
Compounds; Padwa, A., Pearson, W., Eds.; Wiley: New York, NY, 2002; Vol. 59,
pp 539–621.
2. (a) Torsell, K. B. G. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis;
VCH: Weinheim, Germany, 1988; (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti,