Table 2 UV melting points of duplexes containing U:U or U:T
mismatches. Mismatched bases are given in boldface
and a two-step deprotection. Intrastrand-locked nucleic acids
may find use in biomedicine where high fidelity hybridization
is required. We are currently studying other nucleobases and
nucleotide distances.
Probe strand
Target strand
Tma/1C
DTmb/1C
r(GUGGAAAU) (30)
The authors thank C. Deck for oligonucleotide synthesis, M.
Fichte for CD spectra, and DFG for funding (RI 1063/9-1).
24
15
16
17
18
28.6 ꢂ 0.6
30.3 ꢂ 1.0
31.9 ꢂ 0.5
32.9 ꢂ 0.7
28.6 ꢂ 0.7
ꢁ1.7
ꢁ6.4
ꢁ6.0
ꢁ4.8
ꢁ3.3
Notes and references
r(GUGGAAUA) (31)
r(GUGGAUAA) (32)
GTGGAAAT (33)
24
19
27.0 ꢂ 0.3
27.9 ꢂ 0.3
ꢁ3.3
ꢁ5.6
1 (a) G. Vesnaver and K. J. Breslauer, Proc. Natl. Acad. Sci. U. S. A.,
1991, 88, 3569–3573; (b) M. S. Searle and D. H. Williams, Nucleic
Acids Res., 1993, 21, 2051–2056.
24
20
20.7 ꢂ 0.4
21.4 ꢂ 0.8
ꢁ9.6
2 (a) D. Andreatta, S. Sen, J. L. Perez Lustres, S. A. Kovalenko,
´
ꢁ10.4
N. P. Ernsting, C. J. Murphy, R. S. Coleman and M. A. Berg,
J. Am. Chem. Soc., 2006, 128, 6885–6892; (b) K.-W. Tsai,
W.-C. Chan, C.-N. Hsu and W.-C. Lin, BMC Mol. Biol., 2010,
11, 34–42.
3 (a) M. Tarkoy, M. Bolli, B. Schweizer and C. J. Leumann, Helv.
Chim. Acta, 1993, 76, 481–510; (b) A. Stauffinger and
C. J. Leumann, Eur. J. Org. Chem., 2009, 1153–1162.
4 (a) R. Steffens and C. J. Leumann, J. Am. Chem. Soc., 1997, 119,
11548–11549; (b) D. Ittig, A. B. Gerber and C. J. Leumann, Nucleic
Acids Res., 2011, 39, 373–380.
5 (a) S. K. Singh, P. Nielsen, A. A. Koshkin and J. Wengel, Chem.
Commun., 1998, 455–456; (b) A. A. Koshkin, P. Nielsen,
M. Meldgaard, V. K. Rajwanshi, S. K. Singh and J. Wengel,
J. Am. Chem. Soc., 1998, 120, 13252–13253.
6 X. Qiao and Y. Kishi, Angew. Chem., Int. Ed., 1999, 38, 928–931.
´
7 K. V. Gothelf, A. Thomsen, M. Nielsen, E. Clo and R. S. Brown,
24
15
16
17
18
21.5 ꢂ 0.8
21.7 ꢂ 1.4
22.9 ꢂ 1.0
22.8 ꢂ 1.8
19.1 ꢂ 0.8
ꢁ3.4
ꢁ9.6
ꢁ7.2
ꢁ9.2
ꢁ3.6
GUGGAATA (34)
GUGGATAA (35)
24
19
18.0 ꢂ 1.0
14.4 ꢂ 0.4
ꢁ6.9
ꢁ8.1
24
20
11.2 ꢂ 1.3
ꢁ13.7
11.1 ꢂ 1.9
ꢁ16.7
a
Average of 4 curves ꢂ SD 1.5 mM strand concentration and 1 M NaCl,
b
10 mM phosphate buffer, pH 7.0. Melting point difference to perfect
match control duplex (compare Table 1).
J. Am. Chem. Soc., 2004, 126, 1044–1046.
8 R. Tona and R. Haner, Mol. BioSyst., 2005, 1, 93–98.
¨
9 A. H. El-Sagheer, R. Kumar, S. Findlow, J. M. Werner,
A. N. Lane and T. Brown, ChemBioChem, 2008, 9, 50–52.
10 (a) N. C. Chaudhuri and E. T. Kool, J. Am. Chem. Soc., 1995, 117,
10434–10442; (b) E. T. Kool, Chem. Rev., 1997, 97, 1473–1487.
11 (a) A. Kumar, E-J. Chem., 2011, 8, 507–512; (b) Y. Liu, R. Wang,
L. Ding, R. Sha, P. S. Lukeman, J. W. Canary and N. C. Seeman,
ChemBioChem, 2008, 9, 1641–1648.
12 A. E. Ferentz and G. L. Verdine, J. Am. Chem. Soc., 1991, 113,
4000–4002.
13 J. Milton, B. A. Connolly, T. T. Nikiforov and R. Cosstick,
J. Chem. Soc., Chem. Commun., 1993, 779–780.
Molecular modeling suggests that the ethylene/butylene
combination can form an unstrained link (Scheme 1–II), and
so do CD spectra of duplexes of 16 with 25 and 26 (ESIw,
Fig. S45–S46). Thermodynamic data show that the stabilizing
effect is indeed of entropic origin (Table S1, ESIw). Covalently
locked neighboring nucleotides are most stabilizing at the very
terminus, where pairing is weak and wobbling is pronounced.
This is also where the fidelity-enhancing effect is most desirable,
to overcome the poor discriminating ability of unmodified
probes.
14 (a) G. D. Glick, J. Org. Chem., 1991, 56, 6746–6747;
(b) G. D. Glick, Biopolymers, 1998, 48, 83–96.
15 C. Ahlborn, K. Siegmund and C. Richert, J. Am. Chem. Soc., 2007,
129, 15218–15232.
Disulfides have several advantages over other locking
chemistries, such as reductive amination and amide formation
that were also tested in the early phase of our study. Firstly,
there is no need for additional synthetic steps. The lock forms
spontaneously after automated DNA synthesis and deprotec-
tion. Secondly, there is excellent orthogonality to other
functional groups, and no side reactions must be feared, other
than alkylation and intermolecular locking, which appears to
compete poorly with intramolecular locking under our conditions.
Thiols also have minimal steric demand, making it easy to
close very large rings, and disulfide formation has a large free
energy driving force, avoiding incomplete reactions. Still,
disulfide locking can be reversed through reduction. Exploratory
melting curves with duplex 16:25 show a Tm drop of 5.3 1C
when DTT is added. The Tm of the duplex of 18, with its poor
three nucleotide lock, and 25 increased by 1.5 1C upon
addition of DTT.
16 K. Siegmund, C. Ahlborn and C. Richert, Nucleosides, Nucleotides
Nucleic Acids, 2008, 27, 376–388.
17 D. Baek, J. Villen, C. Shin, F. D. Camargo, S. P. Gygi and
´
D. P. Bartel, Nature, 2008, 455, 64–71.
18 A. W. Wark, H. J. Lee and R. M. Corn, Angew. Chem., Int. Ed.,
2008, 47, 644–652.
19 (a) J. T. Goodwin and G. D. Glick, Tetrahedron Lett., 1993, 34,
5549–5552; (b) S. E. Osborne, R. J. Cain and G. D. Glick, J. Am.
Chem. Soc., 1997, 119, 1171–1182.
20 T. Kottysch, C. Ahlborn, F. Brotzel and C. Richert, Chem.–Eur.
J., 2004, 10, 4017–4028.
21 T. J. Bandy, A. Brewer, J. R. Burns, G. Marth, T. Nguyen and
E. Stulz, Chem. Soc. Rev., 2011, 40, 138–148.
22 M. Ahmadian, P. Zhang and D. E. Bergstorm, Nucleic Acids Res.,
1998, 26, 3127–3135.
23 I. Luyten and P. Herdewijn, Eur. J. Med. Chem., 1998, 33,
515–576.
24 (a) T. W. Barnes III and D. H. Turner, J. Am. Chem. Soc., 2001,
123, 4107–4118; (b) B. M. Znosko, T. W. Barnes III, T. R. Krugh
and D. H. Turner, J. Am. Chem. Soc., 2003, 125, 6090–6097.
25 (a) H. A. Held, A. Roychowdhury and S. A. Benner, Nucleosides,
Nucleotides Nucleic Acids, 2003, 22, 391–404; (b) H. A. Held and
S. A. Benner, Nucleic Acids Res., 2002, 30, 3857–3869.
26 F. Hofbauer and I. Frank, Chem.–Eur. J., 2010, 16, 5097–5101.
In conclusion, we have demonstrated that intrastrand locks
of proper length elevate the melting point of duplexes with
DNA and RNA target strands. The locks can be introduced
through DNA synthesis with phosphoramidite building blocks
27 Z. Dogan, R. Paulini, J. A. Rojas Stutz, S. Narayanan and
¨
C. Richert, J. Am. Chem. Soc., 2004, 126, 4762–4763.
c
10826 Chem. Commun., 2011, 47, 10824–10826
This journal is The Royal Society of Chemistry 2011