5928
B.V.S. Reddy et al. / Tetrahedron Letters 52 (2011) 5926–5929
Acknowledgments
O
O
10 mol% Pd(OAc)2
N
H
N
H
PhI(OAc)2
+
G.R. and A.S.R. thank CSIR, New Delhi for the award of fellow-
ships. J.S. Yadav acknowledges the partial support by King Saud
University for Global Research Network for Organic Synthesis
(GRNOS).
COPh
MeOH, 100 0
C
OMe
O
Ph
2
1
4i
Scheme 2. Methoxylation of N-(2-benzoylphenyl)benzamide.
References and notes
Next, we extended this method to study the methoxylation of
benzamides under similar conditions. Accordingly, we attempted
the methoxylation of N-(2-benzoylphenyl)benzamide (1) in meth-
anol using Pd(OAc)2/PhI(OAc)2. By simply changing the solvent
from acetic acid to methanol, the methoxylated product 4i was
obtained in 85% yield over 6 h (Scheme 2).
1. (a) Dyker, G. Handbook of C–H Transformations: Applications in Organic Synthesis;
Wiley-VCH: Weinheim, 2005; (b) Chatani, N. In Directed Metallation; Springer:
Berlin, 2008; Vol. 24,; (c) Beccalli,
E M.; Broggini, G.; Martinelli, M.;
Sottocornola, S. Chem. Rev. 2007, 107, 5318; (d) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013; (e) Goj, L. A.; Gunnoe, T. B. Curr. Org.
Chem. 2005, 9, 671; (f) Li, B.; Yang, S.; Shi, Z. Synlett 2008, 949; (g) Diaz-
Requejo, M. M.; Perez, P. J. Chem. Rev. 2008, 108, 3379; (h) Giri, R.; Shi, B.-F.;
Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242; (i) Daugulis,
O.; Do, J.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
Interestingly, a variety of aromatic carboxamides bearing sub-
stitutions at ortho-, meta-, and para-positions participated well in
this reaction (Table 1). No dehalogenation was obtained in case
of halogenated substrates (Table 1, entries b, c, i, and j). Notably,
various functional groups such as amide, ketone, halides, ethers,
and methyl functionalities are well tolerated under the reaction
conditions. No acetoxylation was observed in the absence of either
Pd(OAc)2 or PhI(OAc)2. Among various oxidants such as AgOAc,
Mn(OAc)3, and Cu(OAc)2, PhI(OAc)2 was found to be effective in
terms of conversion. In all cases, the reactions were clean and
the products were obtained in excellent yields. The products were
characterized by NMR, IR, and mass spectroscopy. The scope and
generality of this process are illustrated with respect to various
benzamides bearing electron-rich as well as electron-deficient sub-
stituents on aromatic ring and the results are presented in Table
1.11
2. (a) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew.
Chem., Int. Ed. 2007, 46, 5554; (b) Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9,
1449; (c) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem.
Soc. 2004, 126, 8658; (d) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47,
6411; (e) Roy, A. H.; Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 2007, 129,
2082; (f) Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.;
Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156; (g) Lane, B. S.;
Sames, D. Org. Lett. 2004, 6, 2897; (h) Wang, D.; Wasa, M.; Giri, R.; Yu, J.-Q. J.
Am. Chem. Soc. 2008, 130, 7190; (i) Ko, S.; Kang, B.; Chang, S. Angew. Chem., Int.
Ed. 2005, 44, 455.
3. (a) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc.
2006, 128, 7416; (b) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44,
2112; (c) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128,
7134.
4. (a) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542; (b)
Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285.
5. (a) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048; (b)
Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9,
2931.
6. (a) Desai, L. V.; Ren, D. T.; Rosner, T. Org. Lett. 2010, 12, 1032; (b) Chernyak, N.;
Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270; (c)
Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Angew. Chem., Int. Ed.
2009, 48, 2925; (d) Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010,
132, 5837; (e) Gu, S.; Chen, C.; Chen, W. J. Org. Chem. 2009, 74, 7203.
7. (a) Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657; (b) Dick, A. R.; Sanford,
M. S. Tetrahedron 2006, 62, 2439; (c) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.;
Pham, Q.-N.; Lazareva, A. Synlett 2006, 3382; (d) Chen, X.; Engle, K. M.; Wang,
D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094; (e) Wasa, M.; Worrell, B. T.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 1275.
8. (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300; (b)
Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717; (c) Wang, G.-
W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476; (d) Stowers, K. J.; Sanford, M. S. Org.
Lett. 2009, 11, 4584; (e) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8,
1141; (f) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149.
We assume that the reaction proceeds via the formation of five-
membered transition state by an oxidative insertion of Pd(II) into
aromatic C–H bond as depicted in Scheme 3. Thus formed palladac-
yle might be stabilized with carbonyl group to induce the ortho-
acetoxylation. The resulting Pd(0) could be converted into Pd(II)
by PhI(OAc)2 to complete the catalytic cycle.
In summary, we have developed a novel protocol for the oxida-
tive functionalization of benzamides bearing ortho-chelating car-
bonyl group via C–H activation. The method is very useful not
only for acetoxylation but also for methoxylation of aromatic sys-
tems. It works for both electron-rich as well as electron-deficient
substrates.
9. Gou, F.-R.; Wang, X.-C.; Huo, P. F.; Bi, H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett.
2009, 11, 5726.
10. (a) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391; (b) Reddy, B.
V. S.; Ramesh, K.; Yadav, J. S. Synlett 2011, 169.
PhI(OAc)2
11. General
procedure
for
acetoxylation:
A
mixture
of
N-(2-
benzoylphenyl)benzamide (361 mg, 1 mmol), PhI(OAc)2 (322 mg, 1 mmol),
Pd(OAc)2 (22 mg, 0.1 mmol), in AcOH (0.5 mL) and Ac2O (0.5 mL) was heated
at 110 °C for the appropriate time under N2 atmosphere. Upon completion of the
reaction as indicated by TLC, the mixture was quenched with water followed by
neutralization with saturated NaHCO3 (20 mL) and then extracted with
dichloromethane (3 Â 20 mL). The combined organic layers were washed with
brine (20 mL) and dried over anhydrous Na2SO4. Removal of the solvent followed
by purification on silica gel (ethyl acetate/n-hexane, 3:7) gave the pure acetoxy
arene. Methoxylation: A mixture of N-(2-benzoylphenyl)benzamide (361 mg,
1 mmol), PhI(OAc)2 (322 mg, 1 mmol), Pd(OAc)2 (22 mg, 0.1 mmol), in MeOH
(0.5 mL) was heated at 100 °C for the appropriate time under N2 atmosphere.
Upon completion of the reaction as indicated by TLC, the mixture was diluted
with water and then extracted with dichloromethane. Removal of the solvent
followed by purification on silica gel (ethyl acetate/n-hexane, 3:7) gave the pure
methoxyarene. Spectroscopic data for selected products: Compound 3b: 2-(2-
Benzoylphenylcarbamoyl)-4-chlorophenyl acetate: 1H NMR (CDCl3, 300 MHz): d
11.39 (br s, 1H), 8.75 (d, J = 9.0 Hz, 1H), 7.92 (d, J = 2.6 Hz, 1H), 7.76–7.69 (m, 2H),
7.65–7.53 (m, 3H), 7.52–7.42 (m, 3H), 7.16–7.09 (m, 2H), 2.32 (s, 3H), 13C NMR
(CDCl3, 75 MHz): d 199.2, 168.9, 162.7, 146.7, 139.6, 138.1, 134.1, 133.3, 132.7,
132.2, 131.8, 130.1, 130.0, 129.4, 128.3, 124.9, 124.3, 122.8, 122.2, 21.0; IR (KBr):
Pd(0)
Pd(II)
C-H
O
activation
PhI(OAc)2
Ac2O
N
H
O
OAc O
Ph
N
H
O
Exclusively formed
O
Ph
N
Pd
O
Ph
L
Favorable complex
AcO
OAc
Pd
O
O
N
H
N
H
m
3421, 2923, 2853, 1773, 1640, 1598, 1448, 1166, 805, 701; ESI-MS: m/z = 416
[M+Na]Å HRMS calcd for C22H16NO4NaCl: 416.0665, found: 416.0665.
O
Ph
O
Ph
Compound 3d: 2-2(-Benzoylphenylcarbamoyl)-3,4-dimethoxyphenylacetate:
1H NMR (CDCl3, 300 MHz): d 10.91 (br s, 1H), 8.76 (d, J = 8.3 Hz, 1H), 7.82–7.70
(m, 2H), 7.64–7.51 (m, 3H), 7.50–7.41 (m, 2H), 7.14–7.06 (m, 1H), 6.96–6.80 (m,
2H), 3.89 (s, 3H), 3.88 (s, 3H), 2.16 (s, 3H). 13C NMR (CDCl3, 75 MHz): d 198.5,
Unfavorable
Not observed
Scheme 3. A plausible reaction pathway.