ofcoreskeleta ofaspidosperma8 and kopsifoline alkaloids9
and by the total synthesis of (()-aspidophytine.10 Boger et
al. developed an elegant approach to (ꢀ)-vindoline and
related alkaloids based on a tandem intramolecular
[4 þ 2]/[3 þ 2] cycloaddition cascade of 1,3,4-oxadiazoles.11
Muthusamy et al. reported the first example of intermole-
cular cycloaddition of five-membered cyclic carbonyl ylides
with a variety of indoles.12
Over the past decade, enantioselective carbonyl ylide
cycloadditions catalyzed by chiral dirhodium(II) com-
plexes have been developed.13ꢀ15 Recently, we reported
catalytic enantioselective cycloadditions of six-membered
carbonyl ylides derived from 2-diazo-3,6-diketoesters with
arylacetylene, alkoxyacetylene, and styrene dipolaro-
philes.16,17 In this process, Rh2(S-TCPTTL)4 (1a)
(Figure 1),18ꢀ20 the chlorinated analogue of Rh2(S-PTTL)4
(1c)21ꢀ23 proved to be the catalyst of choice, providing the
corresponding cycloadducts in good to high yields and
with high levels of enantioselectivity (up to 99% ee) as well
as with perfect exo diastereoselectivity for styrenes. From
frontier molecular orbital (FMO) analysis for the reaction
in the absence of a catalyst, the dominant interaction was
found to be between the LUMO of the carbonyl ylide and
the HOMO of the dipolarophile,24 which predicted the
regiochemistry exactly as observed. As a logical exten-
sion of this catalytic process, we focused on the use of
indoles with high HOMO energy levels as dipolarophiles.
To the best of our knowledge, no examples of an enantio-
selective version of this sequence have been reported
to date.25 Herein, we report the first example of enantio-
selective intermolecular cycloaddition of carbonyl ylides
with indoles, in which Rh2(S-TCPTTL)4 (1a) provides
cycloadducts with high levels of enantioselectivity (up to
99% ee) and excellent exo diastereoselectivity.
(8) (a) Padwa, A.; Price, A. T. J. Org. Chem. 1995, 60, 6258–6259. (b)
Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556–565.
(9) (a) Hong, X.; France, S.; Mejıa-Oneto, J. M.; Padwa, A. Org.
´
Lett. 2006, 8, 5141–5144. (b) Hong, X.; France, S.; Padwa, A. Tetra-
hedron 2007, 63, 5962–5976.
(10) (a) Mejı
´
a-Oneto, J. M.; Padwa, A. Org. Lett. 2006, 8, 3275–3278.
(b) Mejıa-Oneto, J. M.; Padwa, A. Helv. Chim. Acta 2008, 91, 285–302.
´
(11) (a) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.;
Soenen, D. R.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem.
Soc. 2002, 124, 11292–11294. (b) Choi, Y.; Ishikawa, H.; Velcicky, J.;
Elliott, G. I.; Miller, M. M.; Boger, D. L. Org. Lett. 2005, 7, 4539–4542.
(c) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am.
Chem. Soc. 2006, 128, 10596–10612. (d) Kato, D.; Sasaki, Y.; Boger,
D. L. J. Am. Chem. Soc. 2010, 132, 3685–3687. (e) Sasaki, Y.; Kato, D.;
Boger, D. L. J. Am. Chem. Soc. 2010, 132, 13533–13544.
(12) (a) Muthusamy, S.; Gunanathan, C.; Babu, S. A. Tetrahedron
Lett. 2001, 42, 523–526. (b) Muthusamy, S.; Gunanathan, C.; Suresh, E.
Tetrahedron 2004, 60, 7885–7897.
(13) (a) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Tetrahedron
Lett. 1997, 38, 6471–6472. (b) Hodgson, D. M.; Stupple, P. A.; Johnstone,
C. Chem. Commun. 1999, 2185–2186. (c) Hodgson, D. M.; Stupple, P. A.;
Pierard, F. Y. T. M.; Labande, A. H.; Johnstone, C. Chem.;Eur. J. 2001,
7, 4465–4476. (d) Hodgson, D. M.; Glen, R.; Grant, G. H.; Redgrave, A. J.
€
J. Org. Chem. 2003, 68, 581–586. (e) Hodgson, D. M.; Bruckl, T.; Glen, R.;
Labande, A. H.; Selden, D. A.; Dossetter, A. G.; Redgrave, A. J. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5450–5454. (f) Hodgson, D. M.; Glen,
R.; Redgrave, A. J. Tetrahedron: Asymmetry 2009, 20, 754–757.
(14) (a) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda,
C.; Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417–
1418. (b) Kitagaki, S.; Yasugahira, M.; Anada, M.; Nakajima, M.;
Hashimoto, S. Tetrahedron Lett. 2000, 41, 5931–5935. (c) Tsutsui, H.;
Shimada, N.; Abe, T.; Anada, M.; Nakajima, M.; Nakamura, S.;
Nambu, H.; Hashimoto, S. Adv. Synth. Catal. 2007, 349, 521–526.
(15) Suga and co-workers reported enantioselective 1,3-dipolar
cycloadditions of carbonyl ylides using chiral Lewis acid catalysts: (a)
Suga, H.; Inoue, K.; Inoue, S.; Kakehi, A. J. Am. Chem. Soc. 2002, 124,
14836–14837. (b) Suga, H.; Ishimoto, D.; Higuchi, S.; Ohtsuka, M.;
Arikawa, T.; Tsuchida, T.; Kakehi, A.; Baba, T. Org. Lett. 2007, 9,
4359–4362. (c) Suga, H.; Higuchi, S.; Ohtsuka, M.; Ishimoto, D.;
Arikawa, T.; Hashimoto, Y.; Misawa, S.; Tsuchida, T.; Kakehi, A.;
Baba, T. Tetrahedron 2010, 66, 3070–3089.
Figure 1. Chiral dirhodium(II) complexes.
On the basis of our previous work,16 we initially ex-
plored the cycloaddition ofa six-membered cyclic carbonyl
ylide derived from 2-diazo-3,6-diketoester 2a with 2 equiv
of N-methylindole (3a) in the presence of 1 mol % of
Rh2(S-TCPTTL)4 (1a).18ꢀ20 As expected from FMO ana-
lysis (see Supporting Information (SI)), the reaction in R,
R,R-trifluorotoluene proceeded smoothly at rt to give exo
cycloadduct 4a as the sole product in 81% yield (Table 1,
entry 1). The exo stereochemistry of 4a was established by
a NOESY experiment (SI). The enantioselectivity of this
reaction was determined to be 99% ee by HPLC analysis
(16) Shimada, N.; Anada, M.; Nakamura, S.; Nambu, H.; Tsutsui,
H.; Hashimoto, S. Org. Lett. 2008, 10, 3603–3606.
(17) (a) Shimada, N.; Hanari, T.; Kurosaki, Y.; Takeda, K.; Anada,
M.; Nambu, H.; Shiro, M.; Hashimoto, S. J. Org. Chem. 2010, 75, 6039–
6042. (b) Shimada, N.; Hanari, T.; Kurosaki, Y.; Anada, M.; Nambu,
H.; Hashimoto, S. Tetrahedron Lett. 2010, 51, 6572–6575.
(18) (a) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.;
Hashimoto, S. Tetrahedron Lett. 2002, 43, 9561–9564. (b) Tanaka, M.;
Kurosaki, Y.; Washio, T.; Anada, M.; Hashimoto, S. Tetrahedron Lett.
2007, 48, 8799–8802. (c) Anada, M.; Tanaka, M.; Shimada, N.; Nambu,
H.; Yamawaki, M.; Hashimoto, S. Tetrahedron 2009, 65, 3069–3077.
(19) Lindsay, V. N. G.; Lin, W.; Charette, A. B. J. Am. Chem. Soc.
2009, 131, 16383–16385.
(22) For a practical synthesis of Rh2(S-PTTL)4 (1c), see: (a) Tsutsui,
H.; Abe, T.; Nakamura, S.; Anada, M.; Hashimoto, S. Chem. Pharm.
Bull. 2005, 53, 1366–1368. For an immobilization of 1c, see:(b) Davies,
H. M. L.; Walji, A. M. Org. Lett. 2005, 7, 2941–2944. (c) Takeda, K.;
Oohara, T.; Anada, M.; Nambu, H.; Hashimoto, S. Angew. Chem., Int.
Ed. 2010, 49, 6979–6983.
(23) DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. J. Am.
Chem. Soc. 2009, 131, 7230–7231.
(24) Koyama, H.; Ball, R. G.; Berger, G. D. Tetrahedron Lett. 1994,
35, 9185–9188.
(20) Reddy and Davies developed dirhodium(II) tetrakis[N-tetra-
chlorophthaloyl]-(S)-(1-adamantyl)glycinate], Rh2(S-TCPTAD)4. Reddy,
R. P.; Davies, H. M. L. Org. Lett. 2006, 8, 5013–5016.
(21) (a) Watanabe, N.; Ogawa, T.; Ohtake, Y.; Ikegami, S.; Hashimo-
to, S. Synlett 1996, 85–86. (b) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura,
S.; Anada, M.; Hashimoto, S. Org. Lett. 2002, 4, 3887–3890. (c) Minami,
K.; Saito, H.; Tsutsui, H.; Nambu, H.; Anada, M.; Hashimoto, S. Adv.
Synth. Catal. 2005, 347, 1483–1487.
(25) Recently, we reported asymmetric intramolecular carbonyl ylide
cycloaddition of diazo imides containing a tethered indoles, in which
Rh2(S-TCPTTL)4 (1a) provided cycloadducts in moderate yields and
with enantioselectivities of up to 66% ee. Nambu, H.; Hikime, M.;
Krishnamurthi, J.; Kamiya, M.; Shimada, N.; Hashimoto, S. Tetrahe-
dron Lett. 2009, 50, 3675–3678.
(26) The preferred absolute stereochemistry of cycloadducts was not
determined.
Org. Lett., Vol. 13, No. 23, 2011
6285