876
M. Rostami et al. / C. R. Chimie 14 (2011) 869–877
3.3. General procedure for the synthesis of 4-arylidene-2-
phenyl-5(4)-oxazolones
4. Conclusions
In conclusion, we have developed a novel, highly
effective and entirely green procedure for the synthesis
of 4-arylidene-2-phenyl-5(4)-oxazolones at room temper-
ature under solvent-free and US conditions in the presence
of [C6(MIm)2]2W10O32. 2H2O. To the best of our knowledge,
this is the first application of hybrid of organic-inorganic
catalyst in heterocyclic synthesis under sonication condi-
tion that bear dicationic ionic liquid and polyoxometalate.
Moreover, other noteworthy features of this approach as
follows: (i) the catalyst could be easy synthesysed, (ii)
[C6(MIm)2]2W10O32 could be reused for five times after
simple treatment and (iii) the corresponding azlactone can
be separated by easy work-up. The mild reaction condi-
tions, clean reaction profiles, operational and experimental
simplicity, enhanced reaction rates, and with options of
further transformations of the resulting 4-arylidene-2-
phenyl-5(4)-oxazolones into synthetically interesting bio-
logically active compounds, this synthetic methodology
ideally suited for automated applications in organic
synthesis.
A mixture of arylaldehyde (1 mmol), hippuric acid
(1.2 mmol) and acetic anhydride (5 mmol) in the presence
of [(C6(MIm)2)2W10O32]. 2H2O (0.05 mmol) was exposed to
US at room temperature for 5–25 min. The output power of
140 W was chosen after optimization. After completion of
the reaction as indicated by TLC, ethanol (5 ml) was added
to it and stirred for 10 min until a yellow solid precipitated.
The mixture was allowed to stand overnight, and then it
was cooled in an ice bath. An aqueous solution (20%) of
NaHCO3 (10 ml) was added, the solid products and the
catalyst were filtered. The solid materials were dissolved in
Et2O to remove the catalyst. The solvent was evaporated
and the pure products were recrystallized from ethanol
(10)/water (5).
The structures of all the products were unambiguously
established on the basis of their spectral analysis (FT-IR, 1H
NMR, 13C NMR and mass spectra).
3.4. Spectral data for selected compounds
(4Z)-4-(4-Hydroxy-3,5-dimethoxybenzylidene)-2-pheny-
Acknowledgments
loxazol-5(4H)-one (3o): yellow solid, mp 217–219 8C.
FTIR(KBr)
y
(cmÀ1): > 3000, 2922, 2848, 1791, 1761,
max
The authors are grateful to the Center of Excellence of
Chemistry of University of Isfahan (CECUI) and also the
Research Council of the University of Isfahan for financial
support of this work.
1654, 1595, 1201, 1130; 1HNMR (400 MHz, acetone-d6),
d
(ppm): 3.91 (s, 1H), 3.95 (s, 6H), 7.28 (s, 1H), 7.64 (t,
J = 8 Hz, 2H), 7.73 (t, J = 8 Hz, 1H), 7.83 (s, 2H), 8.22 (d, 2H);
13CNMR (100 MHz, acetone-d6),
d(ppm): 55.79, 109.12,
116.48, 125.57, 128.12, 129.28, 130.58, 131.77, 133.64,
136.84, 152.64, 166.82, 174.66; MS(EI): m/z (%) = 325.44,
201.25, 105.11, 77.05, 57.18.
References
[1] X. Wang, J. Li, H. Hu, H. Lin, A. Tian, Y. Chen, J. Inorg. Organomet.
Polymer Mater. 20 (2010) 361.
[2] T. Rajkumar, G. Ranga Rao, J. Chem. Sci. 120 (2008) 587.
[3] T. Rajkumar, G. Ranga Rao, Mater. Letts. 62 (2008) 4134.
(4Z)-4-{4-[(7Z)-(5-Oxo-2-phenyloxazol-4(5H)-ylidene)-
methyl]benzylidene}-2-phenyloxazol-5(4H)-one(3p): yellow
(cmÀ1):
´
[4] A. Corma, S. Iborra, F.X.L. Xamena, R. Monton, J.J. Calvino, C. Prestipino, J.
orange solid, mp: 280–282 8C. FTIR(KBr)
> 3000, 2922, 2852, 1788, 1762, 1653, 1548, 1327, 1159.
1HNMR (400 MHz, CDCl3),
(ppm): 7.59 (m, 5H), 7.68 (m,
2H), 8.25 (m, 4H), 8.32 (s, 5H). 13CNMR (100 MHz, CDCl3),
(ppm): 125.41, 128.60, 129.06, 130.08, 132.68, 133.72,
y
max
Phys. Chem. C 114 (2010) 8828.
[5] P.G. Rickert, M.R. Antonio, M.A. Firestone, K.A. Kubatko, T. Szreder, J.F.
Wishart, M.L. Dietz, J. Phys. Chem. B 111 (2007) 4685.
[6] B.S. Chhikara, R. Chandra, V. Tandon, J. Catal. 230 (2005) 436.
[7] B.S. Chhikara, S. Tehlan, A. Kumar, Synlett (2005) 63.
[8] L. Liu, C. Chen, X. Hu, T. Mohamood, W. Ma, J. Lin, J. Zhao, New J. Chem.
32 (2008) 283.
[9] H. Li, Y. Qiao, L. Hua, Z. Hou, B. Feng, Z. Pan, Y. Hu, X. Wang, X. Zhao, Y.
Yu, Chem. Cat. Chem. 2 (2010) 1165.
[10] M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Chem.
Rev. 109 (2009) 4140.
d
d
134.64, 135.86, 164.28, 167.38. MS (EI): m/z (%) = 420.18,
287.78, 104.89, 76.88.
(4Z)-4-[(1H-Indol-3-yl)methylene]-2-phenyloxazol-
5(4H)-one (3r): orange solid, mp 209–211 8C. 1HNMR
(400 MHz, acetone-d6),
4H), 7.72 (s, 1H), 8.05 (bs, 1H), 8.18 (d, J = 8 Hz, 2H), 8.65 (s,
1H), 8.86 (bs, 1H). 13CNMR (100 MHz, acetone-d6),
d
(ppm): 7.36 (m, 2H), 7.56 (m,
[11] F. Tibiletti, M. Simonetti, K.M. Nicholas, G. Palmisano, M. Parravicini, F.
Imbesi, S. Tollari, A. Penoni, Tetrahedron 66 (2010) 1280.
[12] E.Q. Baltazzi, Rev. Chem. Soc. 9 (1955) 150.
[13] A. Baldisserotto, M. Marastoni, I. Lazzari, C. Trapella, R. Gavioli, R.
Tomatis, Eur. J. Med. Chem. 43 (2008) 1403.
[14] F.J. Winkler, K. Ku¨hnl, R. Medina, R. Schwarz Kaske, H.L. Schmidt, Isot.
Environ. Healt. S 31 (1995) 161.
[15] A.H. Abd-el-Rahm, E.M. Kandeel, E.A. Abdel-Razik, I.A. El-Ghamry, An.
Quim. 89 (1993) 237.
[16] K. Yamada, S.S. Shinoda, H. Oku, K. Komagoe, T. Katsu, R. Katakai, J. Med.
Chem. 49 (2006) 7592.
[17] A.C. Chikere, B. Galunsky, V. Schu¨nemann, V. Kasche, Enzyme. Microb.
Technol. 28 (2001) 168.
[18] G. Guella, I. N’Diaye, M. Fofana, I. Mancini, Tetrahedron 62 (2006) 1165.
[19] J. Zimmermann, K. Bittner, B. Stark, R. Mulhaupt, Biomaterials 23
(2002) 2127.
d
(ppm): 112.23, 112.40, 119.62, 121.63, 123.24, 125.65,
126.45, 127.08, 127.52, 127.55, 129.13, 132.60, 134.48,
137.02, 160.03, 166.99. FTIR(KBr)
(cmÀ1): 3250,
y
max
> 3000, 2922, 2852, 1726, 1639, 1230, 1132. MS (EI): m/z
(%) = 288.04, 154.87, 104.88, 76.87, 56.99.
(4Z)-4-[(5-Methylthiophen-2-yl)methylene]-2-phenylox-
azol-5(4H)-one (3 s): yellow solid; melting point: 145–
147 8C. FTIR(KBr)
1645, 1548, 1325, 1151.1HNMR (400 MHz, CDCl3),
y
max (cmÀ1): > 3000, 2920, 2852, 1788,
d
(ppm): 2.63(s, 3H), 6.897(s, 1H), 7.44(m, 2H), 7.54(m, 2H),
7.62(m, 1H), 8.17(m, 2H). 13CNMR (100 MHz, CDCl3),
[20] M.M. Khodaei, A.R. Khosropour, S.J. Hoseini Jomor, J. Chem. Res. Synop.
(2003) 638.
[21] P. Salehi, M. Dabiri, A.R. Khosropour, P. Roozbehniya, J. Iranian Chem.
Soc. 3 (2006) 98.
[22] A.R. Khosropour, M.M. Khodaei, S.J. Hoseini Jomor, J. Heterocyclic
Chem. 45 (2008) 683.
d(ppm): 16.20, 125.55, 125.89, 126.86, 127.60, 128.22,
128.91, 133.00, 135.95, 136.35, 151.58, 160.56, 167.27. MS
(EI): m/z (%) = 269.12, 207.11, 105.14, 77.08, 51.14.