683 (s), 669 (w), 587 (s), 528 (s), 491 (s), 417 ppm (s); MS (EI): m/z
(rel. int.) 147. HRMS (EI, m/z) calculated for C9H9ON, 148.07569;
found 148.07568.
Received: June 19, 2011
Published online: August 24, 2011
Keywords: amides · amines · fluorides ·
.
homogeneous catalysis · reduction
Scheme 5. Fluoride-catalyzed reduction of imidazolidine-2,4-diones 4.
Yields of isolated products 5 are given in brackets.
J. H. Park, C. F. Campana, X. Cai, E. N. Duesler, P. S. Mariano, J.
Lebrasseur, G. Pave, E. Roulland, A. J. P. White, J. N. Burrows,
[2] a) T. Honma, K. Hayashi, T. Aoyama, N. Hashimoto, T.
Machida, K. Fukasawa, T. Z. Iwama, C. Ikeura, M. Ikuta, I.
Suzuki-Takahashi, Y. Iwasawa, T. Hayama, S. Nishimura, H.
Lꢀonce, A. Pierrꢀ, P. Renard, B. Pfeiffer, P. B. Arimondo, C.
Monneret, Eur. J. Med. Chem. 2006, 41, 379; c) S. Lee, C. Shinji,
K. Ogura, M. Shimizu, S. Maeda, M. Sato, M. Yoshida, Y.
4895; d) D. Hamprecht, F. Micheli, G. Tedesco, A. Checchia, D.
Herzig, Bioorg. Med. Chem. Lett. 2007, 17, 4708; f) N. Kana-
mitsu, T. Osaki, Y. Itsuji, M. Yoshimura, H. Tsujimoto, M. Soga,
Y. S. Kim, S. J. Lim, S. J. Oh, K. H. Dae, H. C. Moon, B. Y.
[3] a) V. G. Stygles, J. F. Newton, J. B. Hook, Res. Commun. Chem.
Pathol. Pharmacol. 1977, 18, 329; b) R. Ceserani, M. Colombo,
V. Mandelli, Prostaglandins Med. 1979, 2, 337; c) Y. Nozawa, M.
Ito, K. Sugawara, K. Hanada, K. Mizoue, J. Antibiot. 1997, 50,
13, 1; e) N. J. Lawrence, J. Liddle, S. Bushell, D. A. Jackson, J.
D. Jimꢀnez, M. D. Pꢀrez- Carrion, M. Sꢁnchez-Rosellꢂ, C. Pozo,
Bioorg. Med. Chem. Lett. 2009, 19, 6588; i) S. Ito, Y. Hirata, Y.
Nagatomi, A. Satoh, G. Suzuki, T. Kimura, A. Satow, S.
Maehara, H. Hikichi, M. Hata, H. Ohta, H. Kawamoto,
at 658C. Surprisingly, the obtained products were not the
simple deoxygenated compounds; instead formation of new
double bonds in place of the amide bonds occurred (5;
Scheme 5). To the best of our knowledge, this kind of
transformation has not been observed previously for imida-
zolidinone derivatives. The mechanism shown in Scheme 3
can well explain the formation of the double bond in case of
imidazolinone derivatives. Because of the presence of hydro-
gen atoms in a-position to the carbonyl group, elimination of
water and formation of a double bond from species B is
preferred; the absence of a hydrogen atom on the a-carbon
atom in phthalimide derivatives leads to the selective mono-
reduction of imides. Interestingly, the reaction with secondary
amides of imidazolidine-2,4-dione derivatives did not work at
all.
In summary, we have developed novel chemoselective
reduction reactions of phthalimides and imidazolidine-2,4-
diones. By using low-cost polymethylhydrosiloxane in the
presence of readily available fluoride ions as catalyst, good to
excellent yields are obtained for different imides. Notable
features of our novel protocols are the chemoselectivity,
operational simplicity, and safe and mild reaction conditions.
In situ spectroscopic investigations allowed for a concise
mechanistic proposal. In addition, by combining fluoride- and
iron-catalyzed hydrosilylations, full reduction of phthalimides
to isoindolines is also possible.
Experimental Section
General procedure for the reduction of imides: A dried 10 mL
Schlenk tube containing a stirrer bar was charged with TBAF (1m
solution in THF, 50 mL, 5 mol%) and the imide (1 mmol). Dry THF
(3 mL) and PMHS (300 mL, 5 mmol) were added sequentially after
purging the Schlenk tube with argon. The mixture was stirred at room
temperature and monitored by thin-layer chromatography. After
complete disappearance of the substrates, the reaction mixture was
filtered through Celite and washed with ethyl acetate. The combined
fractions were concentrated under reduced pressure. The residue was
then purified by column chromatography on silica gel by using a
mixture of ethyl acetate and hexane as the eluent.
[4] a) Y. Kuminobu, Y. Tokunaga, A. Kawata, K. Taka, J. Am.
Chem. Soc. 2006, 128, 202; b) K. Orito, M. Miyazawa, T.
Nakamura, A. Horibata, H. Ushito, H. Nagashaki, M. Yuguchi,
5951; c) K. Kobyashi, M. Hase, K. Hashimoto, S. Fujita, M.
Tanmatsu, O. Morikawa, H. Konishi, Synthesis 2006, 15, 2493;
d) D. A. Klump, Y. Zhang, M. J. OꢃConor, P. M. Esteves, L. S.
Almeid, Org. Lett. 2007, 9, 3085; e) X. Huang, J. Xu, J. Org.
2-methylisoindolin-1-one (2a): Yield: 75%. 1H NMR (400.1mhz,
CDCl3): d = 7.76 (d, J = 7.44, 1H), 7.44 (dd, J1 = 1.22, J2 = 7.33, 1H),
7.37 ( m, 2H), 4.3 (s, 2H), 3.12 ppm (s, 3H); 13C NMR (100.6 mhz,
CDCl3): d = 29.5, 52.0, 122.6, 123.6, 128.0, 131.2, 133.0, 141.0, 168.7;
ATR-IR (cm-1) (neat) 1666 (s), 1615 (w), 1480 (m), 1442 (w), 1420 (w),
1396 (s), 1330 (w), 1273 (s), 1222 (w), 1206 (m), 1088 (w), 1053 (m),
1017 (w), 996 (w), 941 (w), 873 (w), 827 (w), 797 (m), 764 (w), 739 (s),
[6] a) P. S. Anderson, M. E. Christy, C. D. Colton, W. Halczenco,
Okamura, H. Shimizu, Y. Nakamura, T. Iwagawa, M. Nakatani,
Angew. Chem. Int. Ed. 2011, 50, 9180 –9184
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
9183