5924
B. Chandrasekhar et al. / Tetrahedron Letters 52 (2011) 5921–5925
TBDPSO
a
TBDPSO
b
TBDPSO
c
20
O
O
NHBoc
OH
NHBoc
30
NHBoc
32
31
O
OH
O
d
Ref 30
H
H
R
HO
N
N
33
R= C2H5, (+)-167B, 28
R= n-C5H11, (+)-209D, 29
Scheme 4. Synthesis of 5-hydroxymethyl indolizidine. Reagents and conditions: (a) Acryloyl chloride, Et3N, CH2Cl2, rt, 3 h, 90%; (b) Grubbs’ I generation catalyst, CH2Cl2, rt,
24 h, 80%; (c) (i) H2, Pd/C, ethylacetate, rt, 24 h, 90%; (ii) LiAlH4, THF, rt, 1 h, 80%; (d) (i) MsCl, Et3N, CH2Cl2, 0 °C, 1 h; (ii) TBAF, THF, rt, 3 h; (iii) TFA: CH2Cl2, 4 h, then Et3N 1 h,
60% (over 3 steps).
Indolizidine alkaloids are widely distributed in nature in both
plant and animal sources with a wide range of biological activi-
ties.26 Among these alkaloids, monosubstituted indolizidine alka-
loids, such as indolizidine 167B 28 and indolizidine 209D 29
with substitution at C5 position have been attractive synthetic tar-
gets over the past 20 years and several methods were developed
for their synthesis (Fig. 3). Among these some of them are starting
from already existing heterocyclic rings such as pyrrolidine or
piperidine.27 Metal (Cu, Pd, Rh, Sn, Ti) catalyzed approaches are
well exploited for the synthesis of indolizidine 167B and 209D.28
Carbocation mediated intra molecular Schmidt reaction has been
well studied to construct the above indolizidines.29 In this regard
Baskaran and co-workers reported a convergent approach for these
indolizidines from an advanced common intermediate 5-hydroxy
methyl indolizidine 33.30
In our approach, the synthesis of 28 and 29 started from our key
intermediate 20. The allylic alcohol 20 on acylation with acryloyl
chloride afforded 30 in 90% yield. Treatment of the acrylate 30 with
Grubbs 1st generation catalyst furnished the lactone ring 31. The
subsequent catalytic hydrogenation of 31 gave the reduced lac-
tone, which on reduction with LiAlH4 in THF afforded the desired
diol 32. Mesylation of 32 using MsCl, Et3N gave a dimesyl deriva-
tive. The crude dimesylate on desilylation and Boc deprotection
followed by cyclization using Et3N afforded 5-hydroxy methyl ind-
olizidine 33. The compound 33 was previously used as a common
intermediate for the synthesis of indolizidines 167B 28 and 209D
29. The spectral and physical data of 33 were identical with the re-
ported values (Scheme 4).30
References and notes
1. (a) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885; (b) Kitamura, M.; Hirokawa,
Y.; Maezaki, N. Chem. Eur. J. 2009, 15, 9911; (c) Kim, W. H.; Angeles, A. R.; Lee, J.
H.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 6440; (d) Tanaka, K.; Nakamura,
Y.; Sasaki, A.; Ueda, R.; Suzuki, Y.; Kuwahara, S.; Kiyota, H. Tetrahedron 2009, 65,
6115; (e) Sasaki, M.; Ikemoto, H.; Kawahata, M.; Yamaguchi, K.; Takeda, K.
Chem. Eur. J. 2009, 15, 4663; (f) McGowan, G.; Thomas, E. J. Org. Biomol. Chem.
2009, 7, 2576; (g) Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S.; Meyer, C.;
Cossy, J. Org. Lett. 2009, 11, 935; (h) Goto, A.; Fujiwara, K.; Kawai, A.; Kawai, H.;
Suzuki, T. Org. Lett. 2007, 9, 5373.
2. (a) Madhan, A.; Rao, B. V. Tetrahedron Lett. 2003, 44, 5641; (b) Chandrasekhar,
B.; Madhan, A.; Rao, B. V. Tetrahedron 2007, 63, 8746; Chandrasekhar, B.; Rao, B.
V.; Rao, K. V. M.; Jagadeesh, B. Tetrahedron Asymmetry 2009, 20, 1217; (d)
Bhaskar, G.; Rao, B. V. Tetrahedron Lett. 2003, 44, 915; (e) Kumar, A. S.; Haritha,
B.; Rao, B. V. Tetrahedron Lett. 2003, 44, 4261; (f) Sudhakar, N.; Srinivasulu, G.;
Rao, G. S.; Rao, B. V. Tetrahedron Asymmetry 2008, 19, 2153.
3. (a) Felpin, F. X.; Lebreton, J. Curr. Org. Synth. 2004, 1, 83; (b) Wilkinson, T. J.;
Stehle, N. W.; Beak, P. Org. Lett. 2000, 2, 155; (c) Xin, T.; Okamoto, S.; Sato, F.
Tetrahedron Lett. 1998, 39, 6927; (d) Thomas, A.; Roy, O.; Barra, M.; Besset, T.;
Chalard, P.; Troin, Y. Synlett 2007, 1613; (e) Bailey, P. D.; Smith, P. D.; Morgan,
K. M.; Rosair, G. M. Tetrahedron Lett. 2002, 43, 1071; (f) Poerwono, H.;
Higashiyama, K.; Yamauchi, T.; Kubo, H.; Ohmiya, S.; Takahashi, H. Tetrahedron
1998, 54, 13955; Ciblat, S.; Besse, P.; Canet, J.; Troin, Y.; Veschambre, H.; Gelas,
J. Tetrahedron: Asymmetry 1999, 10, 2225; (h) Katritzky, A. R.; Qiu, G.; Yang, B.;
Steel, P. J. J. Org. Chem. 1998, 63, 6699; (i) Swarbrick, M. E.; Gosselin, F.; Lubell,
W. D. J. Org. Chem. 1999, 64, 1993; (j) Singh, O. V.; Han, H. Org. Lett. 2004, 6,
3067; (k) Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003,
68, 1919; (l) Liu, H.; Su, D.; Cheng, G.; Xu, J.; Wang, X.; Hu, Y. Org. Biomol. Chem.
2010, 8, 1899; (m) Ahman, J.; Somfai, P. Tetrahedron Lett. 1995, 36, 303.
4. Asano, N.; Nash, R. J.; Molineux, R. J.; Fleet, G. W. J. Tetrahedron Asymmetry
1645, 2000, 11; (b) Watson, A.; Fleet, G. W. J.; Asano, N.; Molineux, R. J.; Nash, R.
J. Phytochemistry 2001, 56, 265.
5. Afarinkia, K.; Bahar, A. Tetrahedron Asymmetry 2005, 16, 1239; (b) Pearson, M. S.
M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J. Eur. J. Org. Chem. 2005, 2159.
6. Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515.
7. (a) Butters, T. D.; Dwek, R. A.; Platt, F. M. Chem. Rev. 2000, 100, 4683; (b)
Butters, T. D.; van den Brock, L. A. G. M.; Fleet, G. W. J.; Krulle, T. M.; Wormald,
M. R.; Dwek, R. A.; Platt, F. M. Tetrahedron Asymmetry 2000, 11, 113; (c) Butters,
T. D.; Dwek, R. A.; Platt, F. M. Curr. Top. Med. Chem. 2003, 3, 561.
8. (a) Dwek, R. A.; Platt, F. M. J. Virol. 1995, 69, 5791; (b) Mehta, A.; Zitzmann, N.;
Rudd, P. M.; Block, T. M.; Dwek, R. A. FEBS Lett. 1998, 430, 17.
9. Iminosugars from Synthesis to Therapeutic Applications; Compain, P., Martin, O.
R., Eds.; Wiley-VCH: Weinheim, 2007.
10. Weber, K. T.; Hammache, D.; Fantini, J.; Ganem, B. Bioorg. Med. Chem. Lett. 2000,
10, 1011.
11. Compain, P.; Chagnault, V.; Martin, O. R. Tetrahedron Asymmetry 2009, 20, 672.
and references cited there in.
12. (a) Koyama, M.; Sakamura, S. Agri. Biol. Chem. 1974, 38, 1111; (b) Nojima, H.;
Kimura, I.; Fu-Jin, C.; Sugiura, Y.; Haruno, M.; Kato, A.; Asano, N. J. Nat. Prod.
1998, 61, 397; (c) Fan, J. –Q.; Ishii, S.; Asano, N.; Suzuki, Y. Nature Med. 1999, 5,
112; (d) Scofield, A. M.; Fellows, L. E.; Nash, R. J.; Fleet, G. W. J. Life Sci. 1986, 39,
645; (e) Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. J. Med. Chem. 1994, 37, 3701.
13. Asano, N.; Nishida, M.; Kizu, H.; Matsui, K.; Watson, A. A.; R.J. J. Nat. Prod. 1997,
60, 98.
14. Castillo, J. A.; Calveras, J.; Casas, J.; Mitjans, M.; Vinardell, M. P.; Parella, T.;
Inoue, T.; Sprenger, G. A.; Joglar, J.; Clapés, P. Org. Lett. 2006, 8, 6067.
15. (a) Asano, N.; Nishida, M.; Miyauchi, M.; Ikeda, K.; Yamamoto, M.; Kizu, H.;
Kameda, Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. Phytochemistry 2000, 53,
379; (b) Ikeda, K.; Takahashi, M.; Nishida, M.; Miyauchi, M.; Kizu, H.; Kameda,
Y.; Arisawa, M.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Asano, N. Carbohydr.
Res. 2000, 323, 73.
In conclusion we have developed a straightforward stereoselec-
tive approach to 2,6-disubstituted piperidines 9, 10, and 33 by
using [2,3]-WR which efficiently furnished the required highly
functionalized and appropriately substituted valuable building
block 20. Here, we also observed the importance of lateral chela-
tion for the Wittig rearrangement to proceed. This methodology
further can be exploited to generate a broad array of analogues
to study the structure-activity relationship for highly potent glyco-
sidase inhibitors. Further application of this methodology to more
complex systems is in progress.
Acknowledgments
The authors B.C, J.P.R and P.N thank CSIR, New Delhi, for re-
search fellowship. We also thank Dr. J. S. Yadav for his support
and encouragement. DST (SR/S1/OC-14/2007)-New Delhi for finan-
cial support.
Supplementary data
Supplementary data associated with this article can be found, in
16. Goujon, Y. –J.; Gueyrard, D.; Compain, P.; Martin, O. R.; Ikeda, K.; Katoc, A.;
Asano, N. Bioorg. Med. Chem. 2005, 13, 2313.