Table 4 Scope of 4-substituted cyclohexanone derivativesa
Notes and references
1 (a) D. S. Coffey, S. A. May and A. M. Ratz, in Progress in
Heterocyclic Chemistry, ed. G. W. Gribble and T. L. Gilchrist,
Pergamon, London, 2001, vol. XIII, pp. 238–260; (b) J. P. Michael,
Nat. Prod. Rep., 1997, 14, 605; (c) J. P. Michael, Nat. Prod. Rep.,
2002, 19, 742; (d) G. R. Newkome and W. W. Paudler,
Contemporary Heterocyclic Chemistry, Wiley, New York, 1982,
pp. 199–231; (e) A. R. Katritzky, Handbook of Heterocyclic
Chemistry, Pergamon Press, Oxford, UK, 1985.
Entry
5
R
Yieldb (%)
Eec (%)
1
2
3
4
5
6
7
5ib
5ic
5id
5ie
5if
Me
Et
70
73
93
79
80
99
99
87
88
93
93
95
93
94
2 (a) A. Albert and W. J. Gledhill, J. Soc. Chem. Ind., London, 1945,
64, 169; (b) F. H. Shaw and G. Bentley, Immunol. Cell Biol., 1953,
31, 573; (c) E. Heilbronn, Acta Chem. Scand., 1961, 15, 1386;
(d) P. N. Kaul, J. Pharm. Pharmacol., 1962, 14, 243;
(e) S. Maayani, H. Weinstein, N. Ben-Zvi, S. Cohen and
M. Sokolovsky, Biochem. Pharmacol., 1974, 23, 1263;
(f) W. K. Summers, L. V. Majovski, G. M. Marsh, I. K. Tachik
and A. Kling, N. Engl. J. Med., 1986, 315, 1241; (g) B. Drukarch,
J. E. Leysen and J. C. Stoof, Life Sci., 1988, 42, 1011;
(h) J. Dinesen, J. P. Jacobsen, F. P. Hansen, E. B. Petersen and
H. Eggert, J. Med. Chem., 1990, 33, 93; (i) M. C. Pirrung,
J. H. L. Chau and J. Chen, Chem. Biol., 1995, 2, 621;
(j) C. Korth, B. C. H. May, F. E. Cohen and S. B. Prusiner, Proc.
Natl. Acad. Sci. U. S. A., 2001, 98, 9836; (k) M. Wainwright,
J. Antimicrob. Chemother., 2001, 47, 1; (l) S. Bencharit,
C. L. Morton, J. L. Hyatt, P. Kuhn, M. K. Danks, P. M. Potter
and M. R. Redinbo, Chem. Biol., 2003, 10, 341; (m) P. R. Carlier,
T. D. Anderson, D. M. Wong, D. C. Hsu, J. Hartsel, M. Ma,
E. A. Wong, R. Choudhury, P. C. H. Lam, M. M. Totrov and
J. R. Bollmquist, Chem.-Biol. Interact., 2008, 175, 368.
4-MeC6H4
4-MeOC6H4
4-ClC6H4
4-PhC6H4
2-Naphthyl
5ig
5ih
a
Reaction conditions: 3i (0.1 mmol), 4 (0.2 mmol), 2d (0.25 mmol), 1b
b
(0.01 mmol), toluene (2 mL), MgSO4 (200 mg). Isolated yield.
c
d
The ee was determined by HPLC. The absolute configurations
were determined by comparing with that of the known products.
3 (a) M. T. McKenna, G. R. Proctor, L. C. Young and A. L. Harvey,
J. Med. Chem., 1997, 40, 3516; (b) A. Frideling, R. Faure,
J.-P. Galy, A. Kenz, I. Alkorta and J. Elguero, Eur. J. Med.
Chem., 2004, 39, 37; (c) D. S. P. Diego, S. D. C. Jesse, G. Douglas,
L. P. Cesar, C. A. B. Ntonio, A. C. Marco, L. aula and
A. S. G. Carlos, Eur. J. Med. Chem., 2010, 45, 526.
4 (a) S. Bongarzone, G. Legname and M. C. Bolognesi,
J. Med. Chem., 2010, 53, 8197; (b) T. Michalson, S. D’Andrea,
P. Freeman, Jeremiah and Szmuszkovicz, Heterocycles, 1990,
30, 415.
5 (a) P. Friedlander, Ber. Dtsch. Chem. Ges., 1882, 15, 2572;
(b) C.-C. Cheng and S.-J. Yan, Org. React., 1982, 28, 37;
(c) B. Jiang, J.-J. Dong, Y. Jin, X.-L. Du and M. Xu, Eur. J.
Org. Chem., 2008, 3693; (d) J. Marco-Contelles, E. Perez-Mayoral,
A. Samadi, M. C. Carreiras and E. Soriano, Chem. Rev., 2009,
109, 2652.
Scheme 1 The plausible reaction mechanism.
this step, the asymmetric desymmetrization occurred on the 4-sub-
stituted cyclohexanone and therefore, the variation of the aryl
substituent of the aniline affects the stereoselectivity dramatically
(Table 1, entries 10–16). Then, the aryl amine of aniline moiety in D
attacks the resultant iminium leading to the formation of inter-
mediate E, which finally undergoes aromatization to release aniline,
affording the chiral quinolines.
6 L. Li and D. Seidel, Org. Lett., 2010, 12, 5064.
7 (a) T. Akiyama, J. Itoh, K. Yokota and K. Fuchibe, Angew.
Chem., Int. Ed., 2004, 43, 1566; (b) D. Uraguchi and M. Terada,
J. Am. Chem. Soc., 2004, 126, 5356; (c) T. Akiyama, Chem. Rev.,
2007, 107, 5744; (d) M. Terada, Chem. Commun., 2008, 4097;
(e) M. Terada, Synthesis, 2010, 1929.
8 Q.-X. Guo, H. Liu, C. Guo, S.-W. Luo, Y. Gu and L.-Z. Gong,
J. Am. Chem. Soc., 2007, 129, 3790.
In summary, we have developed an enantioselective Friedlander
condensation catalyzed by chiral Brønsted acid in combination
with achiral aniline. The efficient desymmetrization of 4-substituted
cyclohexanones derivatives in reaction with a number of ortho-
aminobenzaldehydes gives chiral quinolines in high yields (up to
99%) and excellent enantioselectivities (up to 95%). In particular,
the protocol tolerates electronically rich ortho-aminobenaldehydes
with high levels of stereochemical control, consequently, represents
an important method complementary to the known reaction.
We are grateful for financial support from NSFC
(20732006), CAS, MOST (973 project 2010CB833300), and
the Ministry of Education.
9 (a) X.-H. Chen, X.-Y. Xu, H. Liu, L.-F. Cun and L.-Z. Gong,
J. Am. Chem. Soc., 2006, 128, 14802; (b) N. Li, X.-H. Chen,
J. Song, S.-W. Luo, F. Wu and L.-Z. Gong, J. Am. Chem. Soc.,
2009, 131, 15301.
10 (a) W. Borsche and J. Barthenheier, Justus Liebigs Ann. Chem.,
1941, 548, 50; (b) W. Borsche and W. Ried, Justus Liebigs Ann.
Chem., 1943, 554, 269.
11 The product was isolated in 15% yield after 3 days.
12 (a) S. Xu, Z. Wang, X. Zhang and K. Ding, Angew. Chem., Int.
Ed., 2008, 47, 2840; (b) M. Hatano, K. Moriyama, T. Maki and
K. Ishihara, Angew. Chem., Int. Ed., 2010, 49, 3823;
(c) M. Klussmann, L. Ratjen, S. Hoffmann, V. Wakchaure,
R. Goddard and B. List, Synlett, 2010, 2189.
13 W. Schrader, P. P. Handayani. J. Zhou and B. List, Angew. Chem.,
Int. Ed., 2009, 48, 1463.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11683–11685 11685