2170
L. Zhang et al.
LETTER
chromatography (hexane–EtOAc = 90:10) to afford 2-
formyl pyrazinone 3b (91.8 mg, 0.316 mmol) in 62% yield.
(11) For the synthesis of a-azido-N-allylamides 1 as well as
characterization of all new compounds, see the Supporting
Information.
(12) For generation of imine from a-azido ketones and esters
under the strong basic conditions, see: (a) Manis, P. A.;
Rathke, M. W. J. Org. Chem. 1980, 45, 4952. (b) Edwards,
O. E.; Purushothaman, K. K. Can. J. Chem. 1964, 42, 712.
(13) One of the possibilities of the reaction course for the
formation of deallylated amide 7 is outlined below. It might
commence with radical 1,5-H shift from putative iminyl
copper species to give allylic radical, further oxidation of
which would afford allylic cation species. Addition of water
to the carbocation followed by C–N bond cleavage from
resulting hemiaminal could deliver deallylated amide 7
(Scheme 8). We recently reported similar 1,5-H shift from
iminyl copper species, see: Zhane, L.; Ang, G. Y.; Chiba, S.
Org. Lett. 2011, 13, 1622.
W. C.; Kurumbail, R. G.; South, M. S. J. Med. Chem. 2003,
46, 4050. (d) Yang, C. C.; Jick, S. S.; Jick, H. Arch. Intern.
Med. 2003, 163, 1926. (e) Mack, A.; Salazar, J. O.
Formulary 2003, 38, 582.
(2) (a) Blake, K. W.; Porter, A. E. A.; Sammes, P. G. J. Chem.
Soc., Perkin Trans. 1 1972, 2494. (b) Birkofer, L. Chem.
Ber. 1947, 80, 83.
(3) (a) Bradbury, R. H.; Griffiths, D.; Rivett, J. E. Heterocycles
1990, 31, 1647. (b) Rothkopf, H. W.; Wöhrle, D.; Müller,
R.; Kossmehl, G. Chem. Ber. 1975, 108, 875. (c) Flament,
I.; Stoll, M. Helv. Chim. Acta 1967, 50, 1754.
(d) Muehlmann, F. L.; Day, A. R. J. Am. Chem. Soc. 1956,
78, 242. (e) Weijlard, J.; Tishler, M.; Erikson, A. E. J. Am.
Chem. Soc. 1945, 67, 802.
(4) For recent reports on the synthesis of substituted pyrazines
and their derivatives, see: (a) Modha, S. G.; Trivedi, J. C.;
Mehta, V. P.; Ermolat’e, D. S.; Van der Eycken, E. V.
J. Org. Chem. 2011, 76, 846. (b) Guerra, P. V.; Yaylayan,
V. A. J. Agric. Food Chem. 2010, 58, 12523.
(c) Krishnakumar, B.; Swaminathan, M. J. Organomet.
Chem. 2010, 695, 2572. (d) Adama, I.; Orainb, D.; Meier, P.
Synlett 2004, 2031. (e) Sato, N.; Matsumoto, K.; Takishima,
M.; Mochizuki, K. J. Chem. Soc., Perkin Trans. 1 1997,
3167. (f) Buchi, G.; Galindo, J. J. Org. Chem. 1991, 56,
2605.
[Cu]
H
•
NH
NH
N
NH
[Cu]
NBn
NBn
NBn
NBn
NBn
Ph
Ph
Ph
Ph
(5) Chiba, S.; Zhang, L.; Lee, J.-Y. J. Am. Chem. Soc. 2010,
132, 7266.
(6) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q.
Angew. Chem. Int. Ed. 2011, 50, in press; DOI: 10.1002/
anie.201100362.
(7) Other bases, such as K3PO4 and NaOAc exhibited similar
reactivity, while MgO was not a viable catalyst for this
transformation.
O
O
O
O
HO
O
NH
H
N
H2O
Bn
Ph
Ph
O
O
7
(8) The structures of 3b and 3i were secured by X-ray
crystallographic analysis (see Supporting Information). The
supplementary crystallographic data of these molecules are
contained in CCDC 824717 and 824717, respectively. These
data can be obtained free of charge from The Cambridge
conts/retrieving.html.
(9) Dihydropyrazinone 4 might be formed from the proposed
primary alkyl radical D (in Scheme 7) by hydrogen
abstraction from the solvent DMF. For the process of
hydrogen abstraction from the solvent DMF: (a) Minisci,
F.; Citterio, A.; Vismara, E.; Giordano, C. Tetrahedron
1985, 41, 4157. (b) Palla, G. Tetrahedron 1981, 37, 2917.
(10) General Procedure for the Cu(II)-Catalyzed Synthesis of
Pyrazinones from a-Azido-N-allylamides
Scheme 8
(14) For recent reports on the azido-alkene 1,3-dipolar
cycloaddition reaction, see: (a) Hui, B. W.-Q.; Chiba, S.
Org. Lett. 2009, 11, 729. (b) Nair, V.; Suja, T. D.
Tetrahedron 2007, 63, 12247. (c) Feldman, K. S.; Iyer, M.
R.; López, C. S.; Faza, O. N. J. Org. Chem. 2008, 73, 5090.
(d) Zhou, Y.; Murphy, P. V. Org. Lett. 2008, 10, 3777.
(e) Kim, S.; Lee, Y. M.; Lee, J.; Lee, T.; Fu, Y.; Song, Y.;
Cho, J.; Kim, D. J. Org. Chem. 2007, 72, 4886. (f) Huang,
X.; Shen, R.; Zhang, T. J. Org. Chem. 2007, 72, 1534.
(g) Feldman, K. S.; Iyer, M. R.; Hester, D. K. II. Org. Lett.
2006, 8, 3116. (h) Feldman, K. S.; Iyer, M. R. J. Am. Chem.
Soc. 2005, 127, 4590; and references cited therein.
To a solution of N-allyl-2-azido-N-benzyl-2-phenyl-
acetamide (1b, 156.1 mg, 0.510 mmol) in DMF (5.1 mL)
were added Cu(OAc)2 (18.9 mg, 0.104 mmol) and K2CO3
(70.4 mg, 0.509 mmol), and the mixture was stirred at 80 °C
for 2 h under an O2 atmosphere (1 atm). After cooling to r.t.,
the solid was filtered through a Celite pad. To the mixture,
1 M aq HCl was added, and the organic materials were
extracted twice with Et2O. The combined extracts were then
washed with H2O, brine, and dried over MgSO4. Filtration
and removal of the solvent under reduced pressure afforded
a crude mixture, which was subjected to flash column
(15) For reports on the mechanism of the elimination of
dinitrogen from triazoline intermediates with heterolytic
cleavage of the N–N bond, see: (a) Shea, K. J.; Kim, J.-S.
J. Am. Chem. Soc. 1992, 114, 4846. (b) Wladkowski, B. D.;
Smith, R. H. Jr.; Michejda, C. J. J. Am. Chem. Soc. 1991,
113, 7893; and references cited therein.
(16) A radical pathway via homolytic cleavage of the N–N bond
of triazoline intermediates is proposed, see: (a) Broeckx,
W.; Overbergh, N.; Samyn, C.; Smets, G.; L’abbé, G.
Tetrahedron 1971, 27, 3527. (b) Feldman, K. S.; Iyer, M.
R.; Hester, D. K. II. Org. Lett. 2006, 8, 3116. (c) Feldman,
K. S.; Iyer, M. R. J. Am. Chem. Soc. 2005, 127, 4590.
Synlett 2011, No. 15, 2167–2170 © Thieme Stuttgart · New York