Fig. 10 (a) CD spectrum of C4AzoGlyGly solution before and after 365 nm light irradiation; (b) Fluorescence intensity of Nile Red in C4AzoGlyGly
solution (5 mM) before and after 365 nm light irradiation. (The UV irradiation time is 30 min while the visible light irradiation time is 1 h.)
1993, 262, 1669; E. Winfree, F. Liu, L. A. Wenzler and
N. C. Seeman, Nature, 1998, 394, 539; H. Yan, S. H. Park,
G. Finkelstein, J. H. Reif and T. H. LaBean, Science, 2003, 301,
1882; F. F. Miranda, K. Iwasaki, S. Akashi, K. Sumitomo,
M. Kobayashi, I. Yamashita, J. R. H. Tame and J. G. Heddle,
Small, 2009, 5, 2077; B. N. Thomas, R. C. Corcoran, C. L. Cotant,
C. M. Lindemann, J. E. Kirsch and P. J. Persichini, J. Am. Chem.
Soc., 1998, 120, 12178; S. G. Zhang, Nat. Biotechnol., 2003, 21,
1171; B. H. Ozer, B. Smarsly, M. Antoniettia and C. F. J. Faul,
Soft Matter, 2006, 2, 329.
2 D. M. Fowler, A. V. Koulov, W. E. Balch and J. W. Kelly, Trends
Biochem. Sci., 2007, 32, 217; A. C. Clark and S. B. Ross-Murphy,
Adv. Polym. Sci., 1987, 83, 57; The Science and Technology of
Gelatin, ed. A. G. Ward and T. A. Courts, Academic Press,
London, 1977; Biorelated Polymers and Gels, ed. T. Okano,
Academic Press, San Diego 1998; W. Shen, J. A. Kornfield and
D. A. Tirrell, Soft Matter, 2007, 3, 99.
It is acknowledged that azobenzene can undergo photo-
induced isomerism accompanied by large structural change as
reflected in the dipole moment and change in geometry.17 On one
hand, the planar tran-azobenzene group transforms into
nonplanar cis-azobenzene and the aromatic packing between
azobenzene groups is suppressed. On the other hand, trans-
azobenzene has no dipole moment while the dipole moment of
the cis-azobenzene is 3.0 D. In other words, cis-azobenzene is
more hydrophilic than trans-azobenzene. Owing to the weak-
ening of p–p stacking (directional) and hydrophobic effect
(nondirectional), elongated nanostructures are not favored in cis-
C4AzoGlyGly solution. Meanwhile, the decrease of p–p stack-
ing between azobenzene groups ultimately weakens the CD
signal.
3 R. Fairman and K. S. Akerfeldt, Curr. Opin. Struct. Biol., 2005, 15,
453; S. G. Zhang, T. Holmes, C. Lockshin and A. Rich, Proc. Natl.
Acad. Sci. U. S. A., 1993, 90, 3334; S. Vauthey, S. Santoso,
H. Y. Gong, N. Watson and S. G. Zhang, Proc. Natl. Acad. Sci. U.
S. A., 2002, 99, 5355; T. J. Deming, Nature, 1997, 390, 386;
T. J. Deming, Soft Matter, 2005, 1, 28; J. P. Schneider,
D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis and J. Kretsinger,
J. Am. Chem. Soc., 2002, 124, 15030; R. P. Nagarkar, R. A. Hule,
D. J. Pochan and J. P. Schneider, J. Am. Chem. Soc., 2008, 130,
4466; A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick,
T. C. B. McLeish, A. N. Semenov and N. Boden, Proc. Natl. Acad.
Sci. U. S. A., 2001, 98, 11857; R. J. Mart, R. D. Osborne,
M. M. Stevens and R. V. Ulijn, Soft Matter, 2006, 2, 822;
I. W. Hamley, M. J. Krysmann, A. Kelarakis, V. Castelletto,
L. Noirez, R. A. Hule and D. J. Pochan, Chem.–Eur. J., 2008, 14,
11369; A. J. Dirks, S. S. van Berkel, H. I. V. Amatdjais-Groenen,
F. P. J. T. Rutjes, J. J. L. M. Cornelissen and R. J. M. Nolte, Soft
Matter, 2009, 5, 1692.
Conclusion
In conclusion, novel dipeptide derivatives bearing azobenzene
group are synthesized which can spontaneously self-assemble
into well-defined nanoribbons as well as sample-spanning
networks forming hydrogels in water. The nanoribbons are
found to be fabricated by the alignment of nanofibers parallel to
the fiber’s long axis. The driving force for self-organized nano-
structures is believed to come from directional forces (hydrogen
bonding and aromatic packing) and the nondirectional hydro-
phobic effect. Inorganic salt is demonstrated to suppress the
electrostatic repulsion and favor the nanoribbon formation.
Furthermore, laminated nanoribbons can transform into short
fibers under UV irradiation, which revert to nanoribbons by
visible light exposure. It is expected that this work can shed light
on stimuli-responsive molecular self-assembly and the rational
design of hierarchical nanostructures through a bottom-up
approach.
4 C.-L. Chen and N. L. Rosi, Angew. Chem. Int. Ed., 2010, 49, 1924;
M. P. Lutolf and J. A. Hubbell, Nat. Biotechnol., 2005, 23, 47;
J. N. Cha, G. D. Stucky, D. E. Morse and T. J. Deming, Nature,
2000, 403, 289.
5 H.-W. Jun, S. E. Paramonov and J. D. Hartgerink, Soft Matter, 2006,
2, 177; S. Toledano, R. J. Williams, V. Jayawarna and R. V. Ulijn, J.
Am. Chem. Soc., 2006, 128, 1070; R. V. Ulijn, J. Mater. Chem., 2006,
16, 2217; Y. Zhang, H. Gu, Z. Yang and B. Xu, J. Am. Chem. Soc.,
2003, 125, 13680; Z. Yang, H. Gu, D. Fu, P. Gao, J. K. Lam and
B. Xu, Adv. Mater., 2004, 16, 1440; Y. Matsuzawa, K. Ueki,
M. Yoshida, N. Tamaoki, T. Nakamura, H. Sakai and M. Abe,
Adv. Funct. Mater., 2007, 17, 1507; M. L. Deng, D. F. Yu,
Y. B. Hou and Y. L. Wang, J. Phys. Chem. B, 2009, 113, 8539;
X. H. Yan, Q. He, K. W. Wang, L. Duan, Y. Cui and J. B. Li,
Angew. Chem., Int. Ed., 2007, 46, 2431; Y.-R. Yoon, Y.-B. Lim,
E. Lee and M. Lee, Chem. Commun., 2008, 1892; D. J. Adams and
P. D. Topham, Soft Matter, 2010, 6, 3707.
Acknowledgements
This work is supported by National Natural Science Foundation
of China (20873001, 20633010, 50821061 and 21073006) and
National Basic Research Program of China (Grant No.
2007CB936201).
6 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294, 1684.
7 J. D. Hartgerink, E. Beniash and S. I. Stupp, Proc. Natl. Acad. Sci. U.
S. A., 2002, 99, 5133; R. C. Claussen, B. M. Rabatic and S. I. Stupp, J.
Am. Chem. Soc., 2003, 125, 12680; K. L. Niece, J. D. Hartgerink,
References
1 J. M. Schnur, B. R. Ratna, J. V. Selinger, A. Singh, G. Jyothi and
K. R. K. Easwaran, Science, 1994, 264, 945; J. M. Schnur, Science,
2768 | Soft Matter, 2011, 7, 2762–2769
This journal is ª The Royal Society of Chemistry 2011