Collected data were corrected for systematic errors using
SADABS based on the Laue symmetry using equivalent
reflections.41
7 (a) N. Nomura, K. Tsurugi, N. Yoshida and M. Okada, Curr. Org.
Synth., 2005, 2, 21; (b) T. Graening and H. G. Schmalz, Angew.
Chem., Int. Ed., 2003, 42, 2580; (c) G. Helmchen, J. Organomet.
Chem., 1999, 576, 203.
Crystal data and intensity data collection parameters are
listed in Table S1.w
8 (a) R. J. Detz, H. Hiemstra and J. H. van Maarseveen, Eur. J. Org.
Chem., 2009, 6263; (b) N. Ljungdahl and N. Kann, Angew. Chem.,
Int. Ed., 2009, 48, 642; (c) Y. Miyake, S. Uemura and
Y. Nishibayashi, ChemCatChem, 2009, 1, 342.
9 A. G. Myers and B. Zheng, J. Am. Chem. Soc., 1996, 118, 4492.
10 V. Cadierno, P. Crochet, S. E. Garcıa-Garrido and J. Gimeno,
Dalton Trans., 2010, 39, 4015.
11 L. Zani and C. Bolm, Chem. Commun., 2006, 4263.
12 G. W. Kabalka and M.-L. Yao, Curr. Org. Synth., 2008, 5, 28.
13 V. Cadierno, J. Dıez, S. E. Garcıa-Garrido, J. Gimeno and
N. Nebra, Adv. Synth. Catal., 2006, 348, 2125.
14 Y. Nishibayashi and S. Uemura, Curr. Org. Chem., 2006, 10, 135.
15 G. Hattori, Y. Miyake and Y. Nishibayashi, ChemCatChem, 2010,
2, 155.
Structure solution and refinement were carried out using the
SHELXTL-PLUS software package.42 The structure was
solved by direct methods and refined successfully in the space
group P-1. Full matrix least-squares refinement was carried
2
2
out by minimizing Sw(Fo ꢂ Fc )2. The non-hydrogen atoms
were refined anisotropically to convergence. All hydrogen
atoms were treated using appropriate riding model (AFIX m3).
A disordered molecule of Et2O was located in the lattice as
solvent of crystallization. The disorder was resolved with two
orientations for all atoms with 50% occupancies and were
refined with geometrical and displacement parameter restraints.
Crystal data for 8b: C70H56Cl2NO2P3Ruꢁ(C4H10O),
M = 1282.16, T = 100(2) K, wavelength 0.71073 A, triclinic,
space group P-1, a = 13.6805(3) A, b = 14.5594(3) A,
c = 17.2394(4) A, a = 77.1170(10)1, b = 71.5080(10)1,
g = 71.6980(10)1, V = 3062.57(12) A3, Z = 2, density
16 Y. Imada, M. Yuasa, I. Nakamura and S.-I. Murahashi, J. Org.
Chem., 1994, 59, 2282.
17 (a) G. Hattori, H. Matsuzawa, Y. Miyake and Y. Nishibayashi,
Angew. Chem., Int. Ed., 2008, 47, 3781; (b) R. J. Detz, M. M. E.
Delville, H. Hiemstra and J. H. van Maarseveen, Angew. Chem.,
Int. Ed., 2008, 47, 3777; (c) G. Hattori, K. Sakata, H. Matsuzawa,
Y. Tanabe, Y. Miyake and Y. Nishibayashi, J. Am. Chem. Soc.,
2010, 132, 10592; (d) A. Yoshida, G. Hattori, Y. Miyake and
Y. Nishibayashi, Org. Lett., 2011, 13, 2460; (e) R. J. Detz, Z. Abiri,
R. le Griel, H. Hiemstra and J. H. van Maarseveen, Chem.–Eur. J.,
2011, 17, 5921.
18 (a) P. A. Evans and M. J. Lawler, Angew. Chem., Int. Ed., 2006,
45, 4970; (b) K. Kondo, Y. Kanda, A. Baba, K. Fukuda,
A. Nakamura, K. Wada, Y. Morisaki and T. Mitsudo, J. Am.
Chem. Soc., 2002, 124, 12960.
19 R. Sanz, D. Miguel, A. Martınez, J. M. Alvarez-Gutierrez and
F. Rodrıguez, Org. Lett., 2007, 9, 727.
20 Z.-P. Zhan, W.-Z. Yang, R.-F. Yang, J.-L. Yu, J.-P. Li and
H.-J. Liu, Chem. Commun., 2006, 3352.
21 Y. Nishibayashi, M. D. Milton, Y. Inada, M. Yoshikawa,
I. Wakiji, M. Hidai and S. Uemura, Chem.–Eur. J., 2005, 11, 1433.
22 (a) R. v. Ohri, A. T. Radosevich, K. J. Hrovat, C. Musich,
D. Huang, T. R. Holman and F. D. Toste, Org. Lett., 2005,
7, 2501; (b) I. Matsuda, K. Komori and K. Itoh, J. Am. Chem.
Soc., 2002, 124, 9072.
(calculated)
= =
1.390 Mg/m3, absorption coefficient
0.472 mmꢂ1, F(000) = 1328, theta range for data collection
1.49 to 26.391, index ranges ꢂ17 r h r 17, ꢂ18 r k r 18,
ꢂ21 r l r 21, reflections collected = 88 454, independent
reflections, 12 305 [R(int) = 0.0428], completeness to theta =
25.001 (98.6%), absorption correction semi-empirical from
equivalents, max. and min. transmission 0.9257 and 0.9077,
refinement method full-matrix least-squares on F2, data/
restraints/parameters 12 305/176/806, goodness-of-fit on
F2 = 1.142, final R indices [I 4 2sigma(I)] R1 = 0.0459,
wR2 = 0.1271, R indices (all data) R1 = 0.0632, wR2
0.1489, largest diff. peak and hole 1.068 and ꢂ0.695 e.Aꢂ3
=
.
23 (a) S. Costin, N. P. Rath and E. B. Bauer, Tetrahedron Lett., 2009,
50, 5485; (b) S. Costin, N. P. Rath and E. B. Bauer, Adv. Synth.
Catal., 2008, 350, 2414.
Acknowledgements
24 S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
25 E. A. Shaffer, C. L. Chen, A. M. Beatty, E. J. Valente and
H.-J. Schanz, J. Organomet. Chem., 2007, 692, 5221.
26 K. G. Caulton, J. Am. Chem. Soc., 1974, 96, 3005.
27 S. Gauthier, R. Scopelliti and K. Severin, Organometallics, 2005,
24, 5792.
We would like to thank the University of Missouri—Research
Board for financial support. Funding from the National
Science Foundation for the purchase of the NMR spectro-
meter (CHE-9974801), the purchase of the ApexII diffracto-
meter (MRI, CHE-0420497) and the purchase of the mass
spectrometer (CHE-9708640) are acknowledged.
28 D. Amoroso, G. P. A. Yap and D. E. Fogg, Organometallics, 2002,
21, 3335.
29 Reviews, recent applications and syntheses: (a) J. F. Teichert and
B. L. Feringa, Angew. Chem., Int. Ed., 2010, 49, 2486;
(b) I. S. Mikhel, H. Ruegger, P. Butti, F. Camponovo, D. Huber
and A. Mezzetti, Organometallics, 2008, 27, 2937; (c) L. A. Arnold,
R. Imbos, A. Mandoli, A. H. M. de Vries, R. Naasz and
B. L. Feringa, Tetrahedron, 2000, 56, 2865.
30 S. Costin, N. P. Rath and E. B. Bauer, Inorg. Chim. Acta, 2008,
361, 1935.
31 T. Leyssens, D. Peeters, A. G. Orpen and J. N. Harvey, Organo-
metallics, 2007, 26, 2637.
References
1 Review and recent examples: (a) G. W. Kabalka and M.-L. Yao,
Curr. Org. Synth., 2008, 5, 28; (b) O. Debleds, E. Gayon,
E. Ostaszuk, E. Vrancken and J.-M. Campagne, Chem.–Eur. J.,
2010, 16, 12207; (c) M. Kalek, T. Johansson, M. Jezowska and
J. Stawinski, Org. Lett., 2010, 12, 4702; (d) V. Cadierno, J. Francos
and J. Gimeno, Organometallics, 2011, 30, 852; (e) N. P. Hiett,
J. M. Lynam, C. E. Welby and A. C. Whitwood, J. Organomet.
Chem., 2011, 696, 378.
2 R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874.
3 F. Amblard, J. H. Cho and R. F. Schinazi, Chem. Rev., 2009,
109, 4207.
4 A. Farwick and G. Helmchen, Org. Lett., 2010, 12, 1108.
5 (a) A. Hoepping, K. M. Johnson, C. George, J. Flippen-Anderson
and A. P. Kozikowski, J. Med. Chem., 2000, 43, 2064;
(b) N. Miyachi, F. Kanda and M. Shibasaki, J. Org. Chem.,
1989, 54, 3511.
32 (a) H. A. Bent, Chem. Rev., 1961, 61, 275; (b) C. C. Levin, J. Am.
Chem. Soc., 1975, 97, 5649.
33 C. A. Tolman, Chem. Rev., 1977, 77, 313.
34 T. J. J. Muller, Eur. J. Org. Chem., 2001, 2021.
35 V. Cadierno and J. Gimeno, Chem. Rev., 2009, 109, 3512.
36 (a) M. Gruselle, C. Cordier, M. Salmain, H. El Amouri, J. Vaissermann
and G. Jaouen, Organometallics, 1990, 9, 2993; (b) K. M. Nicholas,
M. Mulvaney and M. Bayer, J. Am. Chem. Soc., 1980, 102, 2508.
37 (a) A. Bartels, R. Mahrwald and K. Muller, Adv. Synth. Catal.,
2004, 346, 483; (b) R. Riveiros, D. Rodrıguez, J. Perez Sestelo and
L. A. Sarandeses, Org. Lett., 2006, 8, 1403; (c) N. Marion,
6 J. F. Lutz, Angew. Chem., Int. Ed., 2007, 46, 1018.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 2427–2434 2433