Journal of the American Chemical Society
ARTICLE
CHE-0553581 and the use of computational resources at the
Cherry Emerson Center for Scientific Computation
’ REFERENCES
(1) For recent general reviews on rhodium carbenoid chemistry, see:
(a) Davies, H. M.; Morton, D. Chem. Soc. Rev. 2011, 40 (4), 1857–69.
(b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010,
110, 704–724.
(2) For general reviews on chiral dirhodium catalysts, see: (a)
Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545–555.
(b) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911–935.
(3) For leading references, see: (a) Doyle, M. P. Aldrichimica Acta
1996, 29, 3–11. (b) Doyle, M. P.; Brandes, B. D.; Kazala, A. P.; Pieters,
R. J.; Jarstfer, M. B.; Watkins, L. M.; Eagle, C. T. Tetrahedron Lett. 1990,
31, 6613–6616. (c) Hashimoto, T.; Kimura, H.; Maruoka, K. Angew.
Chem., Int. Ed. 2010, 49, 6844–6847. (d) Hashimoto, T.; Maruoka, K. J.
Am. Chem. Soc. 2007, 129, 10054–10055. (e) Hashimoto, S.; Watanabe,
N.; Sato, T.; Shiro, M.; Ikegami, S. Tetrahedron Lett. 1993, 34,
5109–5112. (f) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong,
N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897–6907. (g) Ishitani, H.;
Achiwa, K. Synlett 1997, 781–782. (h) DeAngelis, A.; Boruta, D. T.;
Lubin, J. B.; Plampin, J. N., 3rd; Yap, G. P.; Fox, J. M Chem. Commun.
2010, 46, 4541–4543. (i) DeAngelis, A.; Dmitrenko, O.; Yap, G. P.; Fox,
J. M. J. Am. Chem. Soc. 2009, 131, 7230–7231. (j) Lindsay, V. N. G.;
Nicolas, C.; Charette, A. B. J. Am. Chem. Soc. 2011, 133, 8972–8981. (k)
Lindsay, V. N.; Lin, W.; Charette, A. B. J. Am. Chem. Soc. 2009, 131,
16383–16385. (l) Sambasivan, R.; Ball, Z. T. J. Am. Chem. Soc. 2010,
132, 9289–9291. (m) Goto, T.; Takeda, K; Shimada, N.; Nambu, H.;
Anada, M; Shiro, M.; Ando, K.; Hashimoto, S. Angew. Chem Int. Ed.
2011, 50, 6803–6808. (n) Ghanem, A.; Gardiner, M. G.; Williamson,
R. M.; M€uller, P. Chem.—Eur. J. 2010, 16, 3291–3295.
Figure 8. Predictive stereochemical model for Rh2(R-BTPCP)4-cata-
lyzed transformation.
repulsions with the neighboring ligands. This arrangement
resulted in a C2 symmetric environment at the carbene site
cavity containing two phenyl rings and two para-bromophenyl
groups. One of the rings is blocking the donor group (aryl, styryl)
while the other one is positioned next to the acceptor group
(ester). The same ligand conformation having the s-cis carbene
geometry was found to be 2.5 kcal/mol higher.
On the basis of the computational data summarized above, we
propose a stereochemical model that explains the selectivity
observed in Rh2(R-BTPCP)4 catalyzed transformations (Figure 8).
It is well established that the substrate approaches donor/acceptor-
substituted rhodium-carbenoids over the donor group.17a The
ester group aligns perpendicular to the carbene plane, and blocks
attack on its side. When the substrate approaches over the donor
group, the Re-face is blocked by the aryl ring of the ligand leaving
the Si-face open for the attack. This model predicts correctly the
observed absolute configuration of the products.
(4) Reddy, R. P.; Davies, H. M. L. Org. Lett. 2006, 8, 5013–5016.
(5) Davies, H. M. L.; Panaro, S. A. Tetrahedron Lett. 1999,
40, 5287–5290.
(6) Davies, H. M. L.; Bruzinski, P. R.; Fall, M. J. Tetrahedron Lett.
1996, 37, 4133–4136.
(7) (a) Davies, H. M. L.; Stafford, D. G.; Doan, B. D.; Houser, J. H. J.
Am. Chem. Soc. 1998, 120, 3326–3331. (b) Reddy, R. P.; Davies, H. M. L.
J. Am. Chem. Soc. 2007, 129, 10312–10313.
(8) Lian, Y.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 440–441.
(9) Lian, Y.; Miller, L. C.; Born, S.; Sarpong, R.; Davies, H. M. L.
J. Am. Chem. Soc. 2010, 132, 12422–12425.
’ CONCLUSION
In conclusion, we have developed dirhodium tetrakis-triaryl-
cyclopropanecarboxylates as a new class of chiral catalysts with a
relatively rigid and easily tunable backbone. The efficiency and
selectivity of this catalyst has been demonstrated in a variety of
highly diastereo- and enantioselective reactions of donor/accep-
tor carbenoids. The computational analysis allowed us to pro-
pose a stereochemical model to explain selectivity of the new
catalyst. This analysis illustrates the importance of considering
the conformational mobility of the ligands once the carbene is
bound to the catalyst.
(10) Manning, J. R.; Sexton, T.; Childers, S. R.; Davies, H. M. L.
Bioorg. Med. Chem. Lett. 2009, 19, 58–61.
(11) (a) Doyle, M. P.; Zhou, Q. L.; Charnsangavej, C.; Longoria,
M. A.; McKervey, M. A.; García, C. F. Tetrahedron Lett. 1996,
37, 4129–4132. (b) Moye-Sherman, D.; Welch, M. B.; Reibenspies, J.;
Burgess, K. Chem. Commun. 1998, 2377–2378.
(12) Pelphrey, P.; Hansen, J.; Davies, H. M. L. Chem. Sci. 2010,
1, 254–257.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthetic details, computational
b
details, X-ray crystallographic data, and spectral data. This material is
(13) Davies, H. M. L.; Jin, Q. H. J. Am. Chem. Soc. 2004, 126,
10862–10863.
(14) For more examples of computational analysis of dirhodium
carboxylates see: (a) Snyder, J. P.; Padwa, A.; Stengel, T. J. Am. Chem.
Soc. 2001, 123, 11318–11319. (b) Nakamura, E.; Yoshikai, N.; Yama-
naka, M. J. Am. Chem. Soc. 2002, 124, 7181–7192. (c) Nowlan, D. T., III;
Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J. Am. Chem. Soc. 2003,
125, 15902–15911. (d) Nowlan, D. T., III; Singleton, D. A. J. Am. Chem.
Soc. 2005, 127, 6190–6191. (e) Liu, Z.; Liu, J. Cent. Eur. J. Chem. 2009,
8, 223–228. (f) Hansen, J.; Li, B.; Dikarev, E.; Autschbach, J.; Davies,
H. M. L. J. Org. Chem. 2009, 74, 6564–6571. (g) Hansen, J. H.; Parr,
B. T.; Pelphrey, P.; Jin, Q.; Autschbach, J.; Davies, H. M. L. Angew.
Chem., Int. Ed. 2011, 50, 2544–2548. (h) Hansen, J.; Gregg, T. M.;
Ovalles, S. R.; Lian, Y.; Autschbach, J.; Davies, H. M. L. J. Am. Chem. Soc.
2011, 133, 5076–5085. (i) Liang, Y.; Zhou, H; Yu, Z. ÀX. J. Am. Chem.
Soc. 2009, 131, 17783.
’ AUTHOR INFORMATION
Corresponding Author
hmdavie@emory.edu; dmusaev@emory.edu
’ ACKNOWLEDGMENT
We thank Dr. Janelle Thompson for preliminary studies on the
diphenylcyclopropanecarboxylate catalyst. This research was
supported by the National Science Foundation for HMLD
(CHE-07502730) and for HMLD and DGM under the Center
for Chemical Innovation in Stereoselective CÀH Functionaliza-
tion (CHE-0943980). We acknowledge the NSF-MRI grant
19203
dx.doi.org/10.1021/ja2074104 |J. Am. Chem. Soc. 2011, 133, 19198–19204