Chemistry of Materials
Communication
ACKNOWLEDGMENTS
■
The authors thank Ageeth A. Bol from IBM research for the
help and the advice regarding the graphene growth. This work
was partially funded by the 2008 joint development agreement
between IBM Research and the Government of the Arab
Republic of Egypt through the Egypt Nanotechnology Center
REFERENCES
(1) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
(2) Geim, A. K. Science 2009, 324, 1530.
■
(3) Zhang, Y.; Tan, J. W.; Stormer, H. L.; Kim, P. Nature 2005, 438,
201.
(4) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,
666.
(5) Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.;
Piner, R. D.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.;
Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
(6) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.;
Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457, 706.
(7) Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner,
R. D.; Colombo, L.; Ruoff, R. Nano Lett. 2009, 9, 4359.
(8) Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding,
J. J.; Braet, F. Angew. Chem., Int. Ed. 2010, 49, 2114.
(9) Quintana, M.; Spyrou, K; Grzelczak, M.; Browne, W. R.; Rudolf,
P.; Prato, P. M. ACS Nano 2010, 4, 3527.
Figure 3. (a) Plot of the concentration of SA beads in solution versus
the number of beads adsorbed to the surface of the biotinylated
graphene as determined by SEM imaging. The plot shows a clear
concentration dependence. (b) SEM image of bare graphene after
incubation with the SA-beads, followed by washing with water. This
illustrates a lack of nonspecific binding of Streptavidin. (c) SEM image
of the biotinylated graphene after incubation with the SA beads
followed by washing with water.
(10) Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.;
de Heer, W. A.; Haddon, R. C. J. Am. Chem.Soc. 2009, 131, 1336.
(11) Farmer, D. B.; Mojarad, R. G.; Perebeinos, V.; Lin, Y. M.;
Tulevski, G. S.; Tsang, G. C.; Avouris, P. Nano Lett. 2009, 9, 388.
(12) Farmer, D.; Lin, Y. M.; Afzali-Ardakani, Ali; Avouris, Phaedon
Appl. Phys. Lett. 2009, 94, 213106.
(13) Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Anal. Chem. 2010,
82, 2341.
(14) Lu, Y.; Goldsmith, B. R.; Kybert, N. J.; Johnsona, A. T. C. Appl.
Phys. Lett. 2010, 97, 083107.
(15) Liu, J.; Tao, L.; Yang, W.; Li, D.; Boyer, C.; Wuhrer, R.; Braet,
F.; Davis, T. P. Langmuir 2010, 26, 10068.
(16) Nair, R. R.; Blake, P.; Blake, J. R.; Zan, R.; Anissimova, S.;
Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Geim, A. K.;
Novoselov, K. S.; Latychevskaia, T. Appl. Phys. Lett. 2010, 97, 153102.
(17) Chen, W.; Wee, T. S.; Loh, K. P. J. Am. Chem. Soc. 2008, 130,
14392.
(18) Ohno, Y.; Maehashi, K.; Matsumoto, K. J. Am. Chem. Soc. 2010,
132, 18012.
(19) Shao, Y.; Wang, A. J.; Wu, H.; Liu, J.; Aksay, I. H.; Lin, Y.
shown in Figure 3b where the unmodified graphene shows no
adsorption while the biotinylated graphene is clearly modified
with the beads (Figure 3c). This indicates that graphene may
not need to be passivation when used as a biosensor. Although
one should not generalize to all biomolecules, this could
provide a distinct advantage over traditional platforms such as
gold films where nonspecific adsorption is difficult to prevent.
In summary, a compound was designed and synthesized to
biotinylate graphene using a diazonium salt functionality. The
surface modification was verified using XPS, Raman spectros-
copy, SPR spectroscopy and SEM imaging. Importantly, the
chemistry is benign and does not destroy graphene’s unique
electrical and optical properties. The biotinylated graphene was
shown to effectively sense Streptavidin in solution and the
adsorption was measured in real-time using surface plasmon
resonance spectroscopy. One important observation is that the
unmodified graphene surface does not allow nonspecific bind-
ing as demonstrated in our system. This provides a distinct
advantage of using graphene as a sensing platform, as compared
to traditional substrates.
Electroanalysis 2010, 22, 1027.
(20) Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol,
A. A. ACS Nano 2010, 4, 3839.
(21) Honga, H.; Leea, A.; Kima, T.; Chunga, M.; Choib, C. Appl.
Surf. Sci. 2009, 255, 6103.
(22) Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin,
D. V.; Tour, J. M. ACS Nano 2010, 4, 1949.
(23) Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R. J. Phys.:
Condens. Matter. 2008, 20, 472204.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details (PDF). This material is available free of
(24) Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B 1999,
54, 3.
(25) Zhang, Z.; Menges, B.; Timmons, R. B.; Knoll, W.; Forch, F.
Langmuir 2003, 19, 4765.
(26) Otto, A. Z. Phys. 1968, 216, 398.
AUTHOR INFORMATION
■
Corresponding Author
(27) Raether, R. Surface Plasmons: On Smooth and Rough Surfaces and
on Gratings; Springer: Berlin, 1988.
(28) Knoll, W. Annu. Rev. Phys. Chem. 1998, 49, 569.
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
4881
dx.doi.org/10.1021/cm201577k|Chem. Mater. 2011, 23, 4879−4881