Journal of the American Chemical Society
COMMUNICATION
Scheme 2
(6) Ni: (a) Yang, J.; Rosal, I. D.; Fasulo, M.; Sangtrirutnugul, P.;
Maron, L.; Tilley, T. D. Organometallics 2010, 29, 5544–5550. Pd:
(b) Chen, W.; Shimada, S.; Tanaka, M. Science 2002, 295, 308–310. Pt:
(c) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 1917–1919.
(d) Osakada, K.; Tanabe, M.; Tanase, T. Angew. Chem., Int. Ed. 2000,
39, 4053–4055. (e) Braddock-Wilking, J.; Corey, J. Y.; Dill, K.; Rath,
N. P. Organometallics 2002, 21, 5467–5469. (f) Arii, H.; Takahashi, M.;
Nanjo, M.; Mochida, K. Organometallics 2009, 28, 4629–4631. Fe: (g)
Hirotsu, M.; Nishida, T.; Sasaki, H.; Muraoka, T.; Yoshimura, T.; Ueno,
K. Organometallics 2007, 26, 2495–2498.
(7) (a) Anema, S. G.; Lee, S. K.; Mackay, K. M.; Nicholson, B. K.
J. Organomet. Chem. 1993, 444, 211–218. (b) Evans, C. E.; Harfoot, G. J.;
McIndoe, J. S.; McAdam, C. J.; Mackay, K. M.; Nicholson, B. K.; Robinson,
B. H.; van Tiel, M. L. J. Chem. Soc., Dalton Trans. 2002, 4678–4683.
(8) Shimada, S.; Li, Y.-H.; Choe, Y.-K.; Tanaka, M.; Bao, M.;
Uchimaru, T. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 7758–7763.
(9) Arii, H.; Takahashi, M.; Nanjo, M.; Mochida, K. Organometallics
2011, 30, 917–920.
(10) Yamada, T.; Mawatari, A.; Tanabe, M.; Osakada, K.; Tanase, T.
Angew. Chem., Int. Ed. 2009, 48, 568–571.
(11) For a triangular Pd3 complex with bridging germylene ligands, see:
Campbell, G. K.;Hitchcock, P. B.;Lappert, M. F.;Misra, M. C.J. Organomet.
Chem. 1985, 289, C1–C4.
In summary, we succeeded in isolating 2, characterizing its
structure, and carrying out its DFT analysis. The striking findings
in this study are the formation of the tetrapalladium complex 2 from
the mono- and dinuclear Pd complexes and the skeletal change of
the planar Pd4Ge3 core caused by thiol and CuI, which have the
character of Brønsted and Lewis acids, respectively. The combina-
tion of low-valent Pd and the Ge ligand enabled the formation of the
multinuclear complexes with various structures and their smooth
conversion involving the skeletal change.
(12) Tanabe, M.; Ishikawa, N.; Hanzawa, M.; Osakada, K. Organo-
metallics 2008, 27, 5152–5158.
(13) Tanabe, M.; Hanzawa, M.; Osakada, K. Organometallics 2010,
29, 3535–3540.
(14) Tanabe, M.; Ishikawa, N.; Osakada, K. Organometallics 2006,
25, 796–798.
(15) Cygan, Z. T.; Bender, J. E., IV; Litz, K. E.; Kampf, J. W.;
Banaszak Holl, M. M. Organometallics 2002, 21, 5373–5381.
(16) Frisch, M. J.; et al. Gaussian 09, revision B.01; Gaussian, Inc.:
Wallingford, CT, 2009.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and charac-
b
terization data; MO interaction diagram for 2; and complete ref 16. This
’ AUTHOR INFORMATION
(17) Theoretical calculation of planar [Ni(SiH2)6] was reported to
form the planar NiSi6 core stabilized by the NiÀSi and SiÀSi bonds. See:
Tang, H.; Hoffman, D. M.; Albright, T. A.; Deng, H.; Hoffmann, R.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1616–1618.
Corresponding Author
t
’ ACKNOWLEDGMENT
(18) We characterized [Pd(SC6H4 Bu-4)2(dmpe)] by comparison
of its NMR data with those of the complex which was isolated from the
reaction of [Pd(SiHPh2)2(dmpe)] with excess HSC6H4 Bu-4. See
Supporting Information.
(19) Okazaki, M.; Kimura, H.; Komuro, T.; Okada, H.; Tobita, H.
Chem. Lett. 2007, 36, 990–991.
This workwasfinancially supported by Grants-in-Aid for Scientific
Research for Scientific Research (No. 19205008) and for Scientific
Research on Priority Areas (No. 19027018) from the Ministry of
Education, Culture, Sport, Science, and Technology, Japan.
t
(20) Shimada, S.; Rao, M. L. N.; Tanaka, M. Organometallics 1999,
18, 291–293.
(21) Several other pathways also lead to the formation of 3. For
example, the oxidative addition of thiol to a PdÀPd bond of 2 and the
subsequent rearrangement of the complex would result in formation of
3 via the neutral intermediates corresponding to AÀC.
’ REFERENCES
(1) Braunstein, P., Oro, L. A., Raithby, P. R., Eds. Metal Clusters in
Chemistry, Vol. 1; Wiley-VCH: Weinheim, 1999.
(2) (a) Doyle, G.; Eriksen, K. A.; van Engen, D. J. Am. Chem. Soc.
1986, 108, 445–451. (b) Albano, V. G.; Azzaroni, F.; Iapalucci, M. C.;
Longoni, G.; Monari, M.; Mulley, S.; Proserpio, D. M.; Sironi, A. Inorg.
Chem. 1994, 33, 5320–5328. (c) Albano, V. G.; Iapalucci, M. C.; Longoni,
G.; Manzi, L.; Monari, M. Organometallics 1997, 16, 497–499. (d) Egold,
H.; Schraa, M.; Fl€orke, U.; Partyka, J. Organometallics 2002, 21, 1925–1932.
(e) Sculfort, S.; Croizat, P.; Messaoudi, A.; Bꢀenard, M.; Rohmer, M.-M.;
Welter, R.; Braunstein, P. Angew. Chem., Int. Ed. 2009, 48, 9663–9667.
(3) (a) Murahashi, T.; Fujimoto, M.; Oka, M.; Hashimoto, Y.;
Uemura, T.; Tatsumi, Y.; Nakao, Y.; Ikeda, A.; Sakaki, S.; Kurosawa,
H. Science 2006, 313, 1104–1107. (b) Murahashi, T.; Inoue, R.; Usui, K.;
Ogishi, S. J. Am. Chem. Soc. 2009, 131, 9888–9889.
(4) Cerrada, E.; Contel, M.; Valencia, A. D.; Laguna, M.; Gelbrich,
T.; Hursthouse, M. B. Angew. Chem., Int. Ed. 2000, 39, 2353–2356.
(5) Reviews: (a) Ogino, H.; Tobita, H. Adv. Organomet. Chem. 1998,
42, 223–290. (b) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999,
99, 175–292. (c) Braunstein, P.; Boag, N. M. Angew. Chem., Int. Ed. 2001,
40, 2427–2433. (d) Osakada, K.; Tanabe, M. Bull. Chem. Soc. Jpn. 2005,
78, 1887–1898. (e) Shimada, S.; Tanaka, M. Coord. Chem. Rev. 2006,
250, 991–1011. (f) Waterman, R.; Hays, P. G.; Tilley, T. D. Acc. Chem.
Res. 2007, 40, 712–719. (g) Corey, J. Y. Chem. Rev. 2011, 111, 863–1071.
(22) The reaction in eq 2 is formally reversible, but its detailed processes
are different between the forward and the backward reactions. The reaction of
dmpe with 3 forming tetranuclear 2 should involve a Pd(0)-dmpe species that
reacts with the hexanuclear or trinuclear Pd complexes. Direct elimination of the
thiol from 3 upon coordination of the added dmpe may be responsible.
(23) Adams, R. D.; Pearl, W. C., Jr.; Wong, Y. O.; Zhang, Q.; Hall,
M. B.; Walensky, J. R. J. Am. Chem. Soc. 2011, 133, 12994–12997.
(24) (a) Puddephatt, R. J.; Manojlovic-Muir, L.; Muir, K. W. Poly-
hedron 1990, 9, 2767–2802. (b) Imhof, D.; Venanzi, L. M. Chem. Soc.
Rev. 1994, 185–193. (c) Burrows, A. D.; Mingos, D. M. P. Coord. Chem.
Rev. 1996, 154, 19–69. (d) Burrows, A. D.; Jeffrey, J. G.; Machell, J. C.;
Mingos, D. M. P. J. Organomet. Chem. 1991, 406, 399–408.
(25) There are several possible details of the dynamic behavior of 5
in solution because no coalescence signals were observed above À90 °C.
The dynamic motion of the AgI fragment in solution was suggested
involving a rapid pivot motion over the NMR time scale, monodentate
coordination of AgI to the Pd center, or the smooth dissociation/
recoordination of AgI to the Pd4Ge3 core.
18601
dx.doi.org/10.1021/ja208565q |J. Am. Chem. Soc. 2011, 133, 18598–18601