Organometallics
Communication
2010, 132, 10891. (d) Dzik, W. I.; van der Vlugt, J. I.; Reek, J. N. H.;
de Bruin, B. Angew. Chem., Int. Ed. 2011, 50, 3356. (e) Dzik, W. I.;
Zhang, X. P.; de Bruin, B. Inorg. Chem. 2011, 50, 9896. (f) de Bruin,
bond lengths, bond orders, and spin densities in B and TS1, see
Tables S1 and S2 in the Supporting Information).
The above electronic effects can be combined with steric
tuning to improve the selectivity of the acetylene cross-
dimerization reaction further. To demonstrate this, we
increased the steric bulk of the aromatic acetylenes 2. The
results are presented in Table 1. A significant improvement of
the selectivity is observed, thus providing convenient catalytic
routes to a number of synthetically useful 1,3-enynes.12 The
steric effect is most pronounced for the least reactive (and thus
initially less selective) substrate 1a. For example, in the case of
the nonbulky phenylacetylenes 2b−d cross-dimerization with
1a leads to a moderate selectivity in the range between 53 and
83%, while the use of the sterically more demanding
o-substituted aromatic acetylenes 2e−g increases the selectivity
to 99% (Table 1, entries 9, 11, and 13). Some of these
selectivities are almost as high as those obtained in the reactions
with acetylene 1b. However, the cross-dimerization reactions
using 1b are always more selective than those employing 1a
(Table 1, entries 2, 4, 6, 8, 10, 12, and 14), and the combination
of steric and electronic effects gives access to almost absolute
selectivities in the reactions of 1b with the bulky acetylenes
2e−g.
B.; Hetterscheid, D. G. H.; Koekkoek, A. J. J.; Grutzmacher, H. Prog.
̈
Inorg. Chem. 2007, 55, 247. (g) de Bruin, B.; Hetterscheid, D. G. H.
Eur. J. Inorg. Chem. 2007, 211.
(2) (a) Gansauer, A.; Shi, L.; Otte, M. J. Am. Chem. Soc. 2010, 132,
̈
11858. (b) Gansauer, A.; Otte, M.; Shi, L. J. Am. Chem. Soc. 2011, 133,
̈
416.
(3) (a) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan,
D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20648. (b) Bertelsen,
S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. (c) Amatore, M.;
Beeson, T. D.; Brown, S. P.; MacMillan, D. W. C. Angew. Chem., Int.
Ed. 2009, 48, 5121. (d) MacMillan, D. W. C. Nature 2008, 455, 304.
(e) Kim, H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 398.
(f) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan,
D. W. C. Science 2007, 316, 582.
(4) Akita, M.; Yasuda, H.; Nakamura, A. Bull. Chem. Soc. Jpn. 1984,
57, 480.
(5) Matsuyama, N.; Tsurugi, H.; Satoh, T.; Miura, M. Adv. Synth.
Cat. 2008, 350, 2274 and references therein.
(6) (a) Katagiri, T.; Tsurugi, H.; Satoh, T.; Miura, M. Chem.
Commun. 2008, 3405. (b) Wang, J.; Kapon, M.; Berthet, J. C.;
Ephritikhine, M.; Eisen, M. S. Inorg. Chim. Acta 2002, 334, 183.
(c) Weng, W.; Guo, C.; C
O. V. Chem. Commun. 2006, 197.
́ ̌ ̌
(7) (a) Gyepes, R.; Varga, V.; Horacek, M.; Kubista, J.; Pinkas, J.;
̧elenligil-Çetin, R.; Foxman, B. M.; Ozerov,
In conclusion, we have shown that the selectivity of the TiIII-
catalyzed cross-dimerization of acetylenes can be tuned by
subtle electronic effects. In this substrate-directed reaction,13
the different electronic properties of the acetylene substrates 1a
(4-methylpent-1-yne) and 1b (N,N-dimethyl-N-propargyl-
amine) have a large influence, and the use of 1b leads to
stronger Ti−substrate interactions in the rate- and selectivity-
determining steps of the catalytic reaction. This effect seems to
be the result of the stabilizing effect of the nitrogen substituent
in 1b on its π*-antibonding CC orbitals (lower LUMO
energy), thus leading to stronger π back-donation interactions
from the titanium-based SOMO. This leads to faster reactions
and thus less competition from the homodimerization, resulting
in a substantial increase of the selectivity. Using these electronic
effects, we obtained the highest levels of selective cross-
dimerization reported to date, thus showcasing a promising tool
for organic synthesis.
Mach, K. Organometallics 2010, 29, 3780. (b) Luinstra, G. A.; Teuben,
J. H. J. Am. Chem. Soc. 1992, 114, 3361. (c) Pattiasina, J. W.; Hissink,
C. E.; De Boer, J. L.; Meetsma, A.; Teuben, J. H.; Spek, A. L. J. Am.
́
Chem. Soc. 1985, 107, 7758. (d) Pinkas, J.; Cisaro
̌
va,
́
I.; Gyepes, R.;
̌
Horac
́
e
̌
k, M.; Kubist
̌
a, J.; Cejka, J.; Go
́
Mach, K. Organometallics 2008, 27, 5532. (e) Pinkas, J.; Lukeso
́
̌
́
Gyepes, R.; Cisaro
̌ ́ ̌ ́ ̌
va, I.; Kubista, J.; Horace
Organometallics 2010, 29, 5199.
(8) In principle, coordination of 1b to titanium could also occur with
its nitrogen atom. This is, however, strongly sterically disfavored in the
case of A, and DFT calculations reveal spontaneous dissociation of
N-coordinated 1b from titanium. For examples of intramolecular
N-coordination to sterically less hindered Cp2TiIII compounds, see:
(a) Beckhaus, R.; Oster, J.; Ganter, B.; Englert, U. Organometallics
1997, 16, 3902. (b) Erker, G. Coord. Chem. Rev. 2006, 250, 1056.
(9) Katayama, H.; Yari, H.; Tanaka, M.; Ozawa, F. Chem. Commun.
2005, 4336.
(10) Kirchbauer, F. G.; Pellny, P.-M.; Sun, H.; Burlakov, V. V.; Arndt,
P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Organometallics
2001, 20, 5289.
(11) The formation of homodimer 6 can easily be avoided by
stopping the reaction (via quenching or catalyst deactivation) as soon
as (or before) all the aromatic acetylene is consumed.
(12) (a) Gorin, D. J.; Watson, I. D. G.; Toste, F. D. J. Am. Chem. Soc.
2008, 130, 3736. (b) Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou,
K. Angew. Chem., Int. Ed. 2011, 50, 1338. (c) Miller, K. M.;
Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc.
2004, 126, 4130. (d) Rubina, M.; Conley, M.; Gevorgyan, V. J. Am.
Chem. Soc. 2006, 128, 5818. (e) Gevorgyan, V.; Takeda, A.;
Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 11313. (f) Trost, B. M.;
ASSOCIATED CONTENT
* Supporting Information
Text, tables, and figures giving experimental and computational
details, NMR spectra, and a kinetic study. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
(B.d.B.).
■
Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. J. Am. Chem. Soc.
̈
ACKNOWLEDGMENTS
■
1997, 119, 698. (g) Zhang, Y.-Q.; Chen, Z.-H.; Tu, Y.-Q.; Fan, C.-A.;
Zhang, F.-M.; Wang, A.-X.; Yuan, D.-Y. Chem. Commun. 2009, 2706.
(h) Trost, B. M.; Lumb, J.-P.; Azzarelli, J. M. J. Am. Chem. Soc. 2011,
133, 740.
(13) For reviews on substrate-directed chemical reactions, see:
(a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
(b) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.
This work was supported by the Council for Chemical Sciences
of The Netherlands Organization for Scientific Research (CW-
NWO; G.V.O.) and by the European Research Council (Grant
Agreement 202886; B.d.B.).
REFERENCES
■
(1) (a) Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794.
(b) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.; Zhang, X.
P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264. (c) Dzik, W. I.;
Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc.
6070
dx.doi.org/10.1021/om201008k|Organometallics 2011, 30, 6067−6070