Figure 2. Natural product synthesis as inspiration for methods
development.
ineffective toward oxidative dearomatization, often causing
extensive substrate oligomerization or decomposition.12,13
Consequently, we decided to address these shortcomings
using a PdII/IV catalytic cycle.
Figure 1. Pd-mediated oxidative CÀC bond forming cyclizations.
forming alkene difunctionalization has not been studied to
the same extent.
As illustrated in Table 1, our initial results provided only
trace quantities of the desired dearomatized cyclohexa-
dienes (Table 1, entries 1À3). After extensive optimization,
the electrophilicfluorination reagent Selectfluor was found
to provide the best results, affording spirocycle 2 in 43%
yield as a single diastereoisomer. Treating substrate 1 with
oxidants in the absence of a PdII source (Table 1, entries 5
and 6) afforded only the oxygen trapping product 2a. We
proceeded to screen for the optimal nucleopalladation
coupling partners other than pendant alcohols (Figure 3).
Unfortunately, carboxylic acid and cyanohydrin deriva-
tives (see 3 and 4, respectively, for representative examples)
gave comparable yields without providing deeper insight
into reaction optimization alternatives. In spite of low
isolated yields, this transformation remains a useful method
of generating complex polycyclic compounds and represents
a unique example of a high valent palladium-mediated
CÀC bond forming oxidative dearomatization reaction.14
We subsequently explored the effects of different sub-
stituents on the arene moiety. In the event, we decided to
investigate substrates with pendant carboxylic acids due to
their known ability to participate in nucleopalladation
processes. Thus, upon exposure of 7 to our reaction
conditions, we isolated the desired adduct 8a in only
Recently, the Michael group reported an intermolecular
carboamination reaction using Pd(OAc)2 and N-fluoro-
benzenesulfonimide (NFSI) to synthesize substituted pyr-
rolidines from tethered amino alkenes in moderate to high
yields.10 Another report by Waser and co-workers de-
scribed an intermolecular oxyalkynylation of olefins em-
ploying an alkynyl λ3-iodane oxidant, which enabled them
to generate substituted tetrahydrofuran and benzofuran
derivatives.4f Furthermore, the groups of Kita12b,dÀf and
Swenton12a,c have synthesized spirocyclohexadieneones
through chemical and electrochemical dearomatization
of phenols, respectively. Hypervalent iodine or anodic
oxidations are most effective in forging carbonÀheteroatom
bonds, although there are a few reported examples of CÀC
bond forming dearomatizations that produce ipso substi-
tuted dienones. With this in mind, we envisioned using the
increased reactivity of high valent palladium obtained by
oxidizing Wacker intermediates to allow for the formation
of multiple bonds in a single operation, without the need to
prefunctionalize our substrates.
Our research in transition metal catalyzed olefin
difunctionalization was initiated during efforts direc-
ted toward the synthesis of the terpenoid antibiotic
platensimycin.11 The key transformation in our propo-
sal was an oxidative dearomatization of a para-sub-
stituted phenol to form a spirocyclic cyclohexadienone
as a precursor for a radical conjugate addition to
efficiently provide the bicyclic fragment of platensimy-
cin (Figure 2).
(12) For oxidative cyclizations of phenols: (a) Morrow, G. W.;
Swenton, J. S. Tetrahedron Lett. 1987, 28, 5445. (b) Tamura, Y.; Yakura,
T.; Haruta, J.; Kita, Y. J. Org. Chem. 1987, 52, 3927. (c) Callinan, A.;
Chen, Y.; Morrow, G. W.; Swenton, J. S. Tetrahedron Lett. 1990, 31,
4551. (d) Kita, Y.; Tohma, H.; Kikuchi, K.; Inagaki, M.; Yakura, T.
J. Org. Chem. 1991, 56, 435. (e) Dohi, T.; Maruyama, A.; Minamitsuji,
Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224. (f) Dohi, T.;
Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka,
H.; Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 3787.
(13) For CÀC bond forming dearomatization reactions, see:
(a) Moriarty, R. M.; Prakash, O.; Duncan, M. P.; Vaid, R. K.; Musal-
lam, H. A. J. Org. Chem. 1987, 52, 150. (b) Kita, Y.; Tohma, H.; Inagaki,
M.; Hatanaka, K.; Yakura, T. J. Am. Chem. Soc. 1992, 114, 2175. (c)
Ley, S. V.; Schucht, O.; Thomas, A. W.; Murray, J. P. J. Chem. Soc.,
Perkin Trans. 1 1999, 1251. (d) Zhang, X.; Larock, R. C. J. Am. Chem.
Soc. 2005, 127, 12230. (e) Lalic, G.; Corey, E. J. Org. Lett. 2007, 9, 4921.
(f) Andrez, J. C.; Giroux, M. A.; Lucien, J.; Canesi, S. Org. Lett. 2010,
12, 4368. (g) Desjardins, S.; Andrez, J.-S.; Canesi, S. Org. Lett. 2011, 13,
3406.
Unfortunately, hypervalent iodine, halocyclization, or
conventional Wacker cyclization conditions proved to be
(10) (a) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E.
J. Am. Chem. Soc. 2009, 131, 9488. (b) Sibbald, P. A.; Rosewall, C. F.;
Swartz, R. D.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
(11) (a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.;
Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.;
Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.;
Zhang, C.; Hernandez, L.; Alloco, J.; Basilio, A.; Tormo, J. R.; Genilloud,
O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.;
Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barret, J.; Schmatz, D.;
Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358. (b) Saleem, M.;
Hussain, H.; Ahmed, I.; van Ree, T.; Krohn, K. Nat. Prod. Rep. 2011,
28, 1534.
(14) For palladium mediated arene dearomatization reactions, see:
(a) Nemoto, T.; Ishige, Y.; Yoshida, M.; Kohno, Y.; Kanematsu, M.;
ꢀ
Hamada, Y. Org. Lett. 2010, 12, 5020. (b) Rousseaux, S.; Garcia-Fortanet,
J.; Angel Del Aguila Sanchez, M.; Buchwald, S. L. J. Am. Chem. Soc. 2011,
133, 9282.
Org. Lett., Vol. 13, No. 23, 2011
6321