J.-L. Chen et al. / Inorganic Chemistry Communications 14 (2011) 1894–1897
1897
[8] N. Armaroli, G. Accorsi, M. Holler, O. Moudam, J.-F. Nierengarten, Z. Zhou, R.T.
Wegh, R. Welter, Highly luminescent CuI complexes for light-emitting electro-
chemical cells, Advanced Materials 18 (2006) 1313–1316.
[9] Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Highly efficient
green phosphorescent organic light-emitting diodes based on CuI complexes, Ad-
vanced Materials 16 (2004) 432–436.
[10] M. Nishikawa, K. Nomoto, S. Kume, K. Inoue, M. Sakai, M. Fujii, H. Nishihara, Dual
emission caused by ring inversion isomerization of a 4-methyl-2-pyridyl-pyrimidine
copper(I) complex, Journal of the American Chemical Society 132 (2010)
9579–9581.
[11] J.-L. Chen, B. Wu, W. Gu, X.-F. Cao, H.-R. Wen, R. Hong, J. Liao, B.-T. Su, Synthesis and
characterization of mono- and dinuclear copper(I) complexes with 3-(2-pyrimidi-
nyl)-1,2,4-triazine, Transition Metal Chemistry 36 (2011) 379–385.
[18] W.L. Jia, T. McCormick, Y. Tao, J.-P. Lu, S. Wang, New phosphorescent polynuclear
Cu(I) compounds based on linear and star-shaped 2-(2′-pyridyl)benzimidazolyl
derivatives: syntheses, structures, luminescence, and electroluminescence,
Inorganic Chemistry 44 (2005) 5706–5712.
[19] J. Min, Q. Zhang, W. Sun, Y. Cheng, L. Wang, Neutral copper(I) phosphorescent
complexes from their ionic counterparts with 2-(2′-quinolyl)benzimidazole and
phosphine mixed ligands, Dalton Transactions 40 (2011) 686–693.
[20] K. Saito, T. Arai, N. Takahashi, T. Tsukuda, T. Tsubomura, A series of lumines-
cent Cu(I) mixed-ligand complexes containing 2,9-dimethyl-1,10-phenan-
throline and simple diphosphine ligands, Dalton Transactions (2006)
4444–4448.
[21] Effendy, C. Di Nicola, M. Fianchini, C. Pettinari, B.W. Skelton, N. Somers, A.H.
White, The structural definition of adducts of stoichiometry MX:dppx (1:1)
M=CuI, AgI, X=simple anion, dppx=Ph2P(CH2)xPPh2, x=3–6, Inorganica Chi-
mica Acta 358 (2005) 763–795.
[12] D.G. Cuttell, S.M. Kuang, P.E. Fanwick, D.R. McMillin, R.A. Walton, Simple Cu(I)
complexes with unprecedented excited-state lifetimes, Journal of the American
Chemical Society 124 (2002) 6–7.
[22] Crystal data for 1 (CCDC 829377): C49H41ClCuN3O4P2; Mr=896.79; triclinic; P 1;
a=11.132(3), b=13.443(3), c=15.803(4) Å; α=90.533(3), β=107.428(3),
[13] T. McCormick, W.-L. Jia, S. Wang, Phosphorescent Cu(I) complexes of 2-(2′-pyridyl
benzimidazolyl)benzene: impact of phosphine ancillary ligands on electronic and
photophysical properties of the Cu(I) complexes, Inorganic Chemistry 45 (2006)
147–155.
γ=94.088(3)°; V=2249.4(10) Å3; Z=2; Dc =1.324 g cm−3; μ=0.663 mm−1
;
S=1.095; Final R indices [IN2σ(I)] R1 =0.0521, wR2 =0.1400; R indices (all
data) R1 =0.0710, wR2 =0.1495. Crystal data for 2 (CCDC 806918): C41H39-
ClCuN3O4P2; Mr=798.68; monoclinic; P21/c; a=14.871(7), b=17.892(8),
[14] C.S. Smith, C.W. Branham, B.J. Marquardt, K.R. Mann, Oxygen gas sensing by lumi-
nescence quenching in crystals of Cu(xantphos)(phen)+ complexes, Journal of
the American Chemical Society 132 (2010) 14079–14085.
[15] J.-L. Chen, P. Song, J. Liao, H.-R. Wen, R. Hong, Z.-N. Chen, Y. Chi, Luminescent
homodinuclear copper(I) halide complexes based on the 3,5-bis{6-(2,2′-dipyri-
dyl)}pyrazole ligand, Inorganic Chemistry Communications 13 (2010) 1057–1060.
[16] J.-L. Chen, W. Gu, X.-F. Cao, H.-R. Wen, R. Hong, Luminescent triply-bridged dicop-
per(I) complex possessing 3,5-bis{6-(2,2′-dipyridyl)}pyrazole as a bis-chelating
ligand, Journal of Coordination Chemistry 64 (2011) 1903–1913.
c=14.936(7) Å; β=101.173(6)°; V=3885(3) Å3; Z=4; Dc =1.366 g cm−3
;
μ=0.758 mm−1; S=0.991; Final R indices [IN2σ(I)] R1 =0.0519, wR2 =0.1075;
R indices (all data) R1 =0.1211, wR2 =0.1331.
[23] J.R. Kirchhoff, D.R. McMillin, W.R. Robinson, D.R. Powell, A.T. McKenzie, S. Chen,
Steric effects and the behavior of Cu(NN)(PPh3)2+ systems in fluid solution. crys-
tal and molecular structures of [Cu(dmp)(PPh3)2]NO3 and [Cu(phen)(PPh3)2]
NO3∙1½EtOH, Inorganic Chemistry 24 (1985) 3928–3933.
[24] M.P. Anderson, L.H. Pignolet, Rhodium complexes of 1,4-bis(diphenylphosphino)
butane. Crystal and molecular structures of [Rh(dppb)2]BF4∙C4H10O and [Rh(cod)
(dppb)]BF4, Inorganic Chemistry 20 (1981) 4101–4107.
[17] Synthesis. For 1, a mixture of PPh3 (123.0 mg, 0.469 mmol) and Cu(ClO4)2·6H2O
(43.5 mg, 0.117 mmol) was stirred in CH2Cl2 (25 mL) at RT for 8 h. To this resul-
tant colorless solution was added dropwise with stirring a solution of Hbmp
(24.5 mg, 0.117 mmol) in CH2Cl2 (5 mL). The mixture was stirred for another
3 h and the solvent was evaporated. Light-yellow crystals of 1 (Yield: 73%)
were afforded by slow diffusion of petroleum ether into a 1:3 mixture of CH2Cl2
and 1,2-dichloroethane. Anal. Calcd. for C49H41ClCuN3O4P2: C, 65.62; H, 4.61; N,
4.69. Found: C, 65.32; H, 4.23; N, 4.47%. Selected IR (KBr, cm−1): 1095 (s, ClO4).
1H NMR (400 MHz, CDCl3): δ 12.39 (s, 1H), 8.39 (d, 1H, J=7.6 Hz), 7.37–7.32 (m,
6H), 7.26–7.22 (m, 3H), 7.19–7.00 (m, 25H), 6.99 (t, 1H, J=7.6 Hz), 6.73 (d, 1H,
J=8.4 Hz), 2.28 (s, 3H). For 2, a mixture containing Cu(ClO4)2·6H2O (64.2 mg,
0.173 mmol), activated copper powder (55.8 mg, 0.878 mmol) and Hbmp
(72.4 mg, 0.346 mmol) was stirred for 30 min in dried acetonitrile (30 mL)
under N2 at RT, to which dppb (147.6 mg, 0.346 mmol) were added and stirred
for another 1 h. The resulting light-yellow solution was filtered to remove
unreacted Cu, the filtrate was evaporated. Light-yellow crystals of 2 (Yield:
62%) were obtained by slow diffusion of hexane into the CH2Cl2 solution. Anal.
Calcd. for C41H39ClCuN3O4P2: C, 61.65; H, 4.92; N, 5.26. Found: C, 61.32; H, 4.75;
N, 5.04%. Selected IR (KBr, cm−1): 1060 (s, ClO4). 1H NMR (400 MHz, CDCl3): δ
12.56 (s, 1H), 8.42 (d, 1H, J=7.6 Hz), 7.99 (d, 1H, J=8.0 Hz), 7.83 (t, 1H,
J=7.6 Hz), 7.69 (t, 1H, J=8.0 Hz), 7.51–7.44 (m, 2H), 7.37 (t, 1H, J=7.6 Hz),
7.26–7.22 (m, 13H), 7.20–7.11 (m, 6H), 6.98 (t, 1H, J=7.6 Hz), 2.58 (s, 4H),
2.14 (s, 4H), 1.91 (s, 3H).
[25] R. Fischer, J. Langer, A. Malassa, D. Walther, H. Görls, G. Vaughan, A key step in the
formation of acrylic acid from CO2 and ethylene: the transformation of a nickela-
lactone into
a nickel–acrylate complex, Chemical Communications (2006)
2510–2512.
[26] C.A. Hunter, M.N. Meah, J.K.M. Sanders, Dabco-metalloporphyrin binding: ternary
complexes, host–guest chemistry and the measurement of π–π interactions, Jour-
nal of the American Chemical Society 112 (1990) 5773–5780.
[27] Q. Zhang, J. Ding, Y. Cheng, L. Wang, Z. Xie, X. Jing, F. Wang, Novel heteroleptic CuI
complexes with tunable emission color for efficient phosphorescent light-
emitting diodes, Advanced Functional Materials 17 (2007) 2983–2990.
[28] P.C. Alford, M.J. Cook, A.P. Lewis, G.S.G. McAuliffe, V. Skarda, A.J. Thomson, J.L. Glas-
per, D.J. Robbins, Luminescent metal complexes. Part 5. Luminescence properties
of ring-substituted 1,10-phenanthroline tris-complexes of ruthenium(II), Journal
of the Chemical Society, Perkin Transactions 2 (1985) 705–709.
[29] R.D. Costa, E. Ortí, H.J. Bolink, S. Graber, S. Schaffner, M. Neuburger, C.E. House-
croft, E.C. Constable, Archetype cationic iridium complexes and their use in
solid-state light-emitting electrochemical cells, Advanced Functional Materials
19 (2009) 3456–3463.
[30] L. Qin, Q. Zhang, W. Sun, J. Wang, C. Lu, Y. Cheng, L. Wang, Novel luminescent imi-
nephosphine complex of copper(I) with high photochemical and electrochemical
stability, Dalton Transactions (2009) 9388–9391.