In summary, we have explored the alkyne chemistry of a
quintuply bonded Cr dimer, [HLiPrCr]2 (1). With electron rich
internal alkynes forms [2+2] cycloaddition products
1
[HLiPrCr]2(m2-Z1:Z1-C2R2), i.e., 4-membered dimetallacycles
retaining a Cr–Cr quadruple bond. In contrast, electron poor
CF3CRCCF3 adds across the metal ligand bond of 1. This
dichotomy reflects the unique nature of HOMO of the starting
material, which is ligand based. We are currently investigating
the reactivity of 1 with other unsaturated organic molecules.
This work was supported by a grant from the US National
Science Foundation (CHE-0911081 to KHT)
Notes and references
1 P. P. Power, Acc. Chem. Res., 2011, 44, 627–637.
2 F. A. Cotton, Multiple Bonds Between Metal Atoms, Wiley,
New York, 1982.
3 T. Nguyen, A. D. Sutton, S. Brynda, J. C. Fettinger, G. J. Long
and P. P. Power, Science, 2005, 310, 844–847.
Fig. 2 The molecular structure of 3 with thermal ellipsoids at the
30% probability level; H-atoms, solvent molecules and ligand isopropyl
groups have been omitted for clarity. Selected distances [A] and
angles [1]: Cr1–Cr2 1.9615(6), Cr1–N1 1.9157(19), Cr1–N4 2.0883(18),
Cr2–N2 1.901(2), Cr2–N3 1.898(2), Cr1–C54 2.008(2), Cr1–C55 2.112(2),
4 F. R. Wagner, A. Noor and R. Kempe, Nat. Chem., 2009, 1,
529–536.
5 A. Noor and R. Kempe, Chem. Rec., 2010, 10, 413–416.
6 M. Kaupp, A. Noor, G. Glatz, R. Muller, S. Demeshko and
R. Kempe, Z. Anorg. Allg. Chem., 2009, 635, 1149–1152.
7 A. Noor, G. Glatz, R. Muller, M. Kaupp, S. Demeshko and
R. Kempe, Nat. Chem., 2009, 1, 322–325.
Cr2–C54
1.987(2),
C55–C54
1.436(3),
C27–C55
1.553(3),
N1–C1 1.372(3), C1–C2 1.353(3), N2–C2 1.371(3), N3–C27 1.476(3),
C27–C28 1.501(3), N4–C28 1.282(3), N1–Cr1–Cr2 106.99(6),
N1–Cr1–C54 114.75(9), Cr2–Cr1–C54 60.07(6), N1–Cr1–N4 128.55(7),
Cr2–Cr1–N4 103.36(5), C54–Cr1–N4 116.28(8), N1–Cr1–C55 146.10(8),
Cr2–Cr1–C55 81.44(6), C54–Cr1–C55 40.69(9), N4–Cr1–C55 78.37(8),
N3–Cr2–N2 156.62(8), N3–Cr2–Cr1 99.44(6), N2–Cr2–Cr1 102.88(6),
N3–Cr2–C54 84.70(9), N2–Cr2–C54 112.21(9), Cr1–Cr2–C54 61.14(6).
8 P. P. Power, C. B. Ni, B. D. Ellis and G. J. Long, Chem. Commun.,
2009, 2332–2334.
9 R. Kempe, C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel,
A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins and
M. Scheer, Angew. Chem., Int. Ed., 2011, 50, 7283–7286.
10 K. A. Kreisel, G. P. A. Yap, O. Dmitrenko, C. R. Landis and
K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 14162–14163.
11 R. Kempe, A. Noor, E. S. Tamne, S. Qayyum and T. Bauer,
Chem.–Eur. J., 2011, 17, 6900–6903.
12 J. L. Duncan, D. Vanlerbe and I. J. Wright, J. Mol. Spectrosc.,
1972, 42, 463–477.
13 K. A. Kreisel, G. P. A. Yap and K. H. Theopold, Inorg. Chem.,
2008, 47, 5293–5303.
14 M. Ghosh, S. Sproules, T. Weyhermuller and K. Wieghardt, Inorg.
Chem., 2008, 47, 5963–5970.
15 M. J. Calhorda and R. Hoffmann, Organometallics, 1986, 5,
2181–2187.
16 M. H. Chisholm and M. A. Lynn, J. Organomet. Chem., 1998, 550,
141–150.
17 F. Weinhold and E. D. Glendening, J. Comput. Chem., 1998, 19,
593–609.
gallium complexes of a chelating diamide provides a recent
analogue.26 However, what makes 3 unique is the apparent
retention of its metal–metal multiple bond.
DFT calculation on 30 confirmed that its Cr–Cr bond order
is 3.17, similar to those in compounds 2a–c0. However, the
bond order of the alkyne derived C–C bond is 1.12, much
reduced from the earlier examples and close to a C–C single
bond, in accord with the longer bond distance. In the same
vein, the CF3CRCCF3 fragment accumulates a negative
partial charge of ꢀ0.604 at the central carbons, which significantly
exceeds that of MeCRCMe in 2a0. Interestingly, the sum of
NPA charge of Cr (1.036) hardly differs from that of 1; instead
the negative partial charge of the ligand N atoms decreases
from ꢀ3.241 (in 10) to ꢀ2.883 (in 3). These numbers support
the view that 3 features a disproportionate transfer of charge
from the ligands to the alkyne, leaving the chromium little
changed.
18 F. Weinhold and E. D. Glendening, J. Comput. Chem., 1998, 19,
610–627.
19 R. Siebenlist, H. W. Fruhauf, K. Vrieze, W. J. J. Smeets and
A. L. Spek, Organometallics, 2002, 21, 5628–5641.
20 R. Siebenlist, H. W. Fruhauf, H. Kooijman, N. Veldman,
A. L. Spek, K. Goubitz and J. Fraanje, Inorg. Chim. Acta, 2002,
327, 66–89.
Calculations were also used to address the change in product.
Full optimizations of 2a and 3 and their reaction products
were performed at the BLYP/def2-SVP/LAN2L08(f) level
using the actual, non-curtailed molecules. In both cases, the
[2+2] cycloaddition product is more stable than the product
of the ligand functionalization. However, for 2-butyne the
energy difference is 13.4 kcal molꢀ1, whereas it decreases to a
scant 4.8 kcal molꢀ1 for hexafluoro-2-butyne. We suggest that
the greater exothermicity of the latter reaction leads to an
earlier transition state, and that frontier orbital control of the
reaction path (the HOMO of 1 is entirely ligand based) asserts
itself.
21 R. Siebenlist, M. de Beurs, N. Feiken, H. W. Fruhauf, K. Vrieze,
H. Kooijman, N. Veldman, M. T. Lakin and A. L. Spek, Organo-
metallics, 2000, 19, 3032–3053.
22 N. Feiken, P. Schreuder, R. Siebenlist, H. W. Fruhauf, K. Vrieze,
H. Kooijman, N. Veldman, A. L. Spek, J. Fraanje and K. Goubitz,
Organometallics, 1996, 15, 2148–2169.
23 M. Vanwijnkoop, R. Siebenlist, J. M. Ernsting, P. P. M. Delange,
H. W. Fruhauf, E. Horn and A. L. Spek, J. Organomet. Chem.,
1994, 482, 99–109.
24 M. Vanwijnkoop, R. Siebenlist, P. P. M. Delange, H. W. Fruhauf,
K. Vrieze, W. J. J. Smeets and A. L. Spek, Organometallics, 1993,
12, 4172–4181.
25 H. W. Fruhauf, Coord. Chem. Rev., 2002, 230, 79–96.
¨
26 I. L. Fedushkin, A. S. Nikipelov and K. A. Lyssenko, J. Am.
Chem. Soc., 2010, 132, 7874.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12191–12193 12193