Inhibitor Binding to Carbonic Anhydrases I and II
A R T I C L E S
In the animal kingdom, there are fifteen CA isozymes, of
which five are cytoplasmic (I, II, III, VII, and XIII), two are
mitochondrial (VA and VB), one is secreted (VI), four are
membrane associated (IV, IX, XII, XIV), and three are non-
catalytic (VIII, X, XI).5 Of these isozymes, the X-ray crystal
structures of seven (I, II, III, IV, V, XII, and XIV) have been
determined in the absence and presence of inhibitors.6 Although
these isozymes exhibit varying degrees of amino acid sequence
identity, their active site clefts are remarkably similar and consist
of a catalytic Zn2+ ion situated at the bottom of a 15-Å-deep
conical active site roughly divisible into a hydrophobic half and
a hydrophilic half.6b The Zn2+ ion is coordinated by H94, H96,
H119, and a solvent molecule with a tetrahedral geometry.
The best inhibitors of CAs contain an arylsulfonamide group
that coordinates to the active site Zn2+ ion. General features of
sulfonamide-metal coordination are conserved across all
isozymes of known structure: the ionized sulfonamide NH-
group displaces the zinc-bound hydroxide ion and donates a
hydrogen bond to the side chain of T199, and one sulfonamide
SdO group accepts a hydrogen bond from the backbone NH
group of T199.5,6 The aromatic rings of these inhibitors make
additional weakly polar and van der Waals interactions in the
active site, and ring substituents are capable of van der Waals
and hydrogen bond interactions with residues and solvent
molecules in the midsection of the active site cleft.6
Given that the simplest arylsulfonamide, benzenesulfonamide,
binds to CAs with micromolar affinity, numerous benzene-
sulfonamide derivatives have been synthesized and evaluated
against different carbonic anhydrase isozymes.5 Although many
such inhibitors yield impressive nanomolar binding affinity, they
typically exhibit minimal, if any, specificity for one CA isozyme
versus another. Structure-based approaches7 toward the design
of isozyme-specific inhibitors are potentially facilitated by the
availability of more than 240 crystal structures of CA-inhibitor
complexes in the Protein Data Bank;8 yet attempts to design
isozyme specific inhibitors have met with limited success, e.g.,
usually achieving 10-100-fold differences in binding to one
isozyme relative to another.9 One limitation in the available
structural data is the partial molecular disorder of some,10a-c
but not all,10d of the larger inhibitors observed in crystal
structures. For example, such molecular disorder characterizes
the binding of certain “two-prong” inhibitors containing cupric-
iminodiacetate groups tethered to benzenesulfonamide by 5-12
Å long linker segments.11 This observation now inspires us to
explore the contribution of the length and chemical nature of
the linker segment to enzyme-inhibitor recognition, affinity,
and specificity.
Here, we report the structural and functional consequences
of positively charged, negatively charged, and neutral groups
incorporated at the para position of benzenesulfonamide CA
inhibitors (Table 1). The para-substituted groups are chemically
and electronically diverse and are designed to interact with the
midsection of the active site cleft, i.e., where linker segments
of two-prong benzenesulfonamide inhibitors would bind. Cor-
relation of these structural data with microcalorimetric measure-
ments of inhibitor binding allows us to discern structural and
chemical features of inhibitor linker segments that may con-
tribute to enzyme-inhibitor affinity and specificity.
Results
Binding Affinities of CA Inhibitors. The Ki, Kd, and 1/Ka
values of benzenesulfonamide derivatives determined by kinetic
measurements of p-nitrophenylacetate hydrolysis, the dansyla-
mide displacement assay, and isothermal titration calorimetric
(ITC) studies of CA-inhibitor complexes, respectively, are
recorded in Table 1. The Ki, Kd, and 1/Ka values measured for
each inhibitor are generally comparable, and as a group these
inhibitors exhibit somewhat preferential binding affinity for CA
II than for CA I (a common feature of most benzenesulfonamide
derivatives for which Ki values are reported in the literature5).
However, the degree of isozyme specificity appears to depend
on the para-substituted group for the inhibitors shown in Table
1. For example, the positively charged amino group of pAEBS
(p-aminoethyl benzenesulfonamide) causes ∼6-fold and ∼20-
fold decreases relative to benzenesulfonamide in binding affinity
to CA II and CA I, respectively, indicating that the positively
charged amino group is more poorly tolerated in the CA I active
site than in the CA II active site. In contrast, the negatively
charged carboxylate group of pCEBS (p-carboxyethyl benze-
nesulfonamide) causes slight (∼2-fold) increases in binding
affinity to both isozymes relative to benzenesulfonamide,
indicating that the negatively charged carboxylate is accom-
modated equally well in the CA I and CA II active sites. A
marked increase in the binding affinities of both positively and
negatively charged benzenesulfonamide derivatives results when
(5) (a) Supuran, C. T.; Scozzafava, A.; Conway, J. Carbonic Anhydrase: Its
Inhibitors and ActiVators; CRC Press: Boca Raton, FL, 2004. (b) Supuran,
C. T.; Scozzafava, A.; Casini, A. Med. Res. ReV. 2003, 23, 146-189. (c)
Tripp, B. C.; Smith, K.; Ferry, J. G. J. Biol. Chem. 2001, 276, 48615-
48618.
(6) (a) Kannan, K. K.; Notstrand, B.; Fridborg, K.; Lo¨vgren, S.; Ohlsson, A.;
Petef, M. Proc. Natl. Acad. Sci. U.S.A. 1975, 51-55. (b) Liljas, A.; Kannan,
K. K.; Bergste´n, P.-C.; Waara, I.; Fridborg, K.; Strandberg, B.; Carlbom,
U.; Ja¨rup, L.; Lo¨vgren, S.; Petef, M. Nat. New Biol. 1972, 235, 131-137.
(c) Håkansson, K.; Carlsson, M.; Svensson, L. A.; Liljas, A. J. Mol. Biol.
1992, 227, 1192-1204. (d) Mallis, R. J.; Poland, B. W.; Chatterjee, T. K.;
Fisher, R. A.; Darmawan, S.; Honzatko, R. B.; Thomas, J. A. FEBS Lett.
2000, 237-241. (e) Stams, T.; Chen, Y.; Boriack-Sjodin, P. A.; Hurt, J.
D.; Liao, J.; May, J. A.; Dean, T.; Laipis, P.; Silverman, D. N.; Christianson,
D. W. Protein Sci. 1998, 7, 556-563. (f) Stams, T.; Nair, S. K.; Okuyama,
T.; Waheed, A.; Sly, W. S.; Christianson, D. W. Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 13589-13594. (g) Boriack-Sjodin, P. A.; Heck, R. W.;
Laipis, P. J.; Silverman, D. N.; Christianson, D. W. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 10949-10953. (h) Whittington, D. A.; Waheed, A.;
Ulmasov, B.; Shah, G. N.; Grubb, J. H.; Sly, W. S.; Christianson, D. W.
Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 9545-9550. (i) Whittington, D.
A.; Grubb, J. H.; Waheed, A.; Shah, G. N.; Sly, W. S.; Christianson, D.
W. J. Biol. Chem. 2004, 279, 7223-7228.
(9) (a) Scozzafava, A.; Supuran, C. T. J. Enzyme Inhib. 1999, 14, 343-363.
(b) Popescu, A.; Simion, A.; Scozzafava, A.; Briganti, F.; Supuran, C. T.
J. Enzyme Inhib. 1999, 14, 407-423. (c) Kim, C.-Y.; Whittington, D. A.;
Chang, J. S.; Liao, J.; May, J. A.; Christianson, D. W. J. Med. Chem. 2002,
45, 888-893. (d) Gupta, S. P.; Kumaran, S. J. Enzyme Inhib. Med. Chem.
2005, 20, 251-259. (e) Innocenti, A.; Villar, R.; Martinez-Merino, V.; Gil,
M. J.; Scozzafava, A.; Vullo, D.; Supuran, C. T. Bioorg. Med. Chem. Lett.
2005, 15, 4872-4876. (f) Mincione, F.; Starnotti, M.; Masini, E.;
Bacciottini, L.; Scrivanti, C.; Casini, A.; Vullo, D.; Scozzafava, A.; Supuran,
C. T. Bioorg. Med. Chem. Lett. 2005, 15, 3821-3827. (g) O¨ zensoy, O¨ .;
Puccetti, L.; Fasolis, G.; Arslan, O.; Scozzafava, A.; Supuran, C. T. Bioorg.
Med. Chem. Lett. 2005, 15, 4862-4866. (h) Hillebrecht, A.; Supuran, C.
T.; Klebe, G. ChemMedChem 2006, 839-853.
(10) (a) Boriack, P. A.; Christianson, D. W.; Kingery-Wood, J.; Whitesides, G.
M. J. Med. Chem. 1995, 2286-2291. (b) Bunn, A. M. C.; Alexander, R.
S.; Christianson, D. W. J. Am. Chem. Soc. 1994, 116, 5063-5068. (c)
Elbaum, D.; Nair, S. K.; Patchan, M. W.; Thompson, R. B.; Christianson,
D. W. J. Am. Chem. Soc. 1996, 118, 8381-8387. (d) Alterio, V.; Vitale,
R. M.; Monti, S. M.; Pedone, C.; Scozzafava, A.; Cecchi, A.; De Simone,
G.; Supuran, C. T. J. Am. Chem. Soc. 2006, 128, 8329-8335.
(11) Jude, K. M.; Banerjee, A. L.; Haldar, M. K; Manokaran, S.; Roy, B.; Mallik,
S.; Srivastava, D. K.; Christianson, D. W. J. Am. Chem. Soc. 2006, 128,
3011-3018.
(7) (a) Geysen, H. M.; Schoenen, F.; Wagner, D.; Wagner, R. Nat. ReV. Drug
DiscoV. 2003, 2, 222-230. (b) Jager, S.; Brand, L.; Eggeling, C. Curr.
Pharm. Biotechnol. 2003, 4, 463-476.
(8) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig,
H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235-
242.
9
J. AM. CHEM. SOC. VOL. 129, NO. 17, 2007 5529